Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revolutionary Electrode Formation Method for Si Nano Devices Realized by University-IAI Collaboration

02.02.2011
Discovery of Breakthrough Electrode Formation Method without Accompanying Doping into Si Substrate

The Advanced Electronic Materials Center (Managing Director: Toyohiro Chikyo) of the National Institute for Materials Science (President: Sukekatsu Ushioda), in joint work with Chiba University, Tokyo Institute of Technology, Nagoya University, the University of Tsukuba, Waseda University, and JST-CREST, developed a new electrode formation method for realization of future nano devices.

In this development project, the possibility of controlling the height of the Schottky barrier at metal/Si interfaces by doping only the metal side, without modifying the Si side, was predicted theoretically by Chiba University, and this was demonstrated in collaborative experiments by NIMS, Tokyo Institute of Technology, Nagoya University, the University of Tsukuba, Waseda University, and JST-CREST. This is an unprecedented new electrode formation method.

With Si semiconductors, a good metal/Si bond had been realized by doping the Si side in order to achieve an electrode/Si bond with a low contact resistance value.

However, with miniaturization of devices, deviations in the positions and the concentration of dopants added to the Si side began to affect the metal/Si interface, and it had become impossible to realize a stable electrode structure.

Subsequently, with further miniaturization of the junction region in Si devices, there was a tendency in structural design toward 3-dimensional devices using Si wiring. However, until now, there was no method of forming stable electrodes, and various problems also arose, such as large contact resistance, etc. The results of this research provide a revolutionary method which solves the problems encountered to date.

In integrated circuits and future nano devices, an understanding of the formation process of materials in nano spaces and the properties of those materials from the fundamental mechanism will contribute to solving essential problems. The results of the present research were demonstrated for the first time through collaboration by a large number of research institutions and researchers with various specialties.

Contact information:

For more detail:

Toyohiro Chikyo
Advanced Electronic Materials Center
National Institute for Materials Science
TEL: +81-29-860-4725
E-MailFchikyo.toyohiro@nims.go.jp
For general inquiry:
Public Relations Office, NIMS
TEL:+81-29-859-2026
FAX:+81-29-859-2017
E-MailFpr@nims.go.jp

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp

More articles from Materials Sciences:

nachricht New gel-like coating beefs up the performance of lithium-sulfur batteries
22.03.2017 | Yale University

nachricht Pulverizing electronic waste is green, clean -- and cold
22.03.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>