Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revolutionary Electrode Formation Method for Si Nano Devices Realized by University-IAI Collaboration

02.02.2011
Discovery of Breakthrough Electrode Formation Method without Accompanying Doping into Si Substrate

The Advanced Electronic Materials Center (Managing Director: Toyohiro Chikyo) of the National Institute for Materials Science (President: Sukekatsu Ushioda), in joint work with Chiba University, Tokyo Institute of Technology, Nagoya University, the University of Tsukuba, Waseda University, and JST-CREST, developed a new electrode formation method for realization of future nano devices.

In this development project, the possibility of controlling the height of the Schottky barrier at metal/Si interfaces by doping only the metal side, without modifying the Si side, was predicted theoretically by Chiba University, and this was demonstrated in collaborative experiments by NIMS, Tokyo Institute of Technology, Nagoya University, the University of Tsukuba, Waseda University, and JST-CREST. This is an unprecedented new electrode formation method.

With Si semiconductors, a good metal/Si bond had been realized by doping the Si side in order to achieve an electrode/Si bond with a low contact resistance value.

However, with miniaturization of devices, deviations in the positions and the concentration of dopants added to the Si side began to affect the metal/Si interface, and it had become impossible to realize a stable electrode structure.

Subsequently, with further miniaturization of the junction region in Si devices, there was a tendency in structural design toward 3-dimensional devices using Si wiring. However, until now, there was no method of forming stable electrodes, and various problems also arose, such as large contact resistance, etc. The results of this research provide a revolutionary method which solves the problems encountered to date.

In integrated circuits and future nano devices, an understanding of the formation process of materials in nano spaces and the properties of those materials from the fundamental mechanism will contribute to solving essential problems. The results of the present research were demonstrated for the first time through collaboration by a large number of research institutions and researchers with various specialties.

Contact information:

For more detail:

Toyohiro Chikyo
Advanced Electronic Materials Center
National Institute for Materials Science
TEL: +81-29-860-4725
E-MailFchikyo.toyohiro@nims.go.jp
For general inquiry:
Public Relations Office, NIMS
TEL:+81-29-859-2026
FAX:+81-29-859-2017
E-MailFpr@nims.go.jp

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp

More articles from Materials Sciences:

nachricht InLight study: insights into chemical processes using light
05.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>