Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revolutionary Electrode Formation Method for Si Nano Devices Realized by University-IAI Collaboration

02.02.2011
Discovery of Breakthrough Electrode Formation Method without Accompanying Doping into Si Substrate

The Advanced Electronic Materials Center (Managing Director: Toyohiro Chikyo) of the National Institute for Materials Science (President: Sukekatsu Ushioda), in joint work with Chiba University, Tokyo Institute of Technology, Nagoya University, the University of Tsukuba, Waseda University, and JST-CREST, developed a new electrode formation method for realization of future nano devices.

In this development project, the possibility of controlling the height of the Schottky barrier at metal/Si interfaces by doping only the metal side, without modifying the Si side, was predicted theoretically by Chiba University, and this was demonstrated in collaborative experiments by NIMS, Tokyo Institute of Technology, Nagoya University, the University of Tsukuba, Waseda University, and JST-CREST. This is an unprecedented new electrode formation method.

With Si semiconductors, a good metal/Si bond had been realized by doping the Si side in order to achieve an electrode/Si bond with a low contact resistance value.

However, with miniaturization of devices, deviations in the positions and the concentration of dopants added to the Si side began to affect the metal/Si interface, and it had become impossible to realize a stable electrode structure.

Subsequently, with further miniaturization of the junction region in Si devices, there was a tendency in structural design toward 3-dimensional devices using Si wiring. However, until now, there was no method of forming stable electrodes, and various problems also arose, such as large contact resistance, etc. The results of this research provide a revolutionary method which solves the problems encountered to date.

In integrated circuits and future nano devices, an understanding of the formation process of materials in nano spaces and the properties of those materials from the fundamental mechanism will contribute to solving essential problems. The results of the present research were demonstrated for the first time through collaboration by a large number of research institutions and researchers with various specialties.

Contact information:

For more detail:

Toyohiro Chikyo
Advanced Electronic Materials Center
National Institute for Materials Science
TEL: +81-29-860-4725
E-MailFchikyo.toyohiro@nims.go.jp
For general inquiry:
Public Relations Office, NIMS
TEL:+81-29-859-2026
FAX:+81-29-859-2017
E-MailFpr@nims.go.jp

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp

More articles from Materials Sciences:

nachricht Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells
22.11.2017 | University of California - San Diego

nachricht Fine felted nanotubes: CAU research team develops new composite material made of carbon nanotubes
22.11.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>