Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Take Magnetic Waves for a Spin

30.01.2014
Researchers at New York University have developed a method for creating and directing fast moving waves in magnetic fields that have the potential to enhance communication and information processing in computer chips and other consumer products.

Their method, reported in the most recent issue of the journal Nanotechnology, employs “spin waves,” which are waves that move in magnetic materials.

Physically, these spin waves are much like water waves—like those that propagate on the surface of an ocean. However, with a purpose akin to that of electromagnetic waves (i.e., light and radio waves), spin waves can efficiently transfer energy and information from place to place.

“Spin waves hold tremendous promise in improving the functionality of a range of technologies,” says Andrew Kent, a professor in NYU’s Department of Physics and one of the paper’s co-authors. “Our results mark another vital step in harnessing a resource that is faster and more energy efficient that what we rely on today.”

Currently, electromagnetic waves in antennas can be converted into spin waves. However, the resulting spin waves have a long wavelength and propagate slowly. In contrast, short-wavelength spin waves can move over greater distances, more quickly, and with less energy, and thus present the possibility of improving a range of communications and electronic devices.

Yet, scientists have had difficulty in creating such spin waves. To overcome this obstacle, the NYU researchers developed “spin torque nano-oscillators” (STNO)—nanoscale devices that can convert a direct current into spin waves. They showed that these oscillators can be arranged in arrays to direct the spin wave energy, much the way antennas are used to direct electromagnetic waves.

Crucially, they developed a method that allows the spin waves to navigate in specific patterns and directions throughout a magnetic material. Their idea relies on the interference of waves and controlling the interference to produce specific wave propagation patterns.

The study’s other authors were Ferran Macià, a research scientist at the University of Barcelona and an NYU post-doctoral fellow at the time of the study, and Frank Hoppensteadt, a professor emeritus at NYU’s Courant Institute of Mathematical Sciences.

The research was supported by a Marie Curie International Outgoing Fellowship (253214), a grant from the Army Research Office (W911NF-08-1-0317), and Neurocirc LLC.

James Devitt | Newswise
Further information:
http://www.nyu.edu

More articles from Materials Sciences:

nachricht Mat4Rail: EU Research Project on the Railway of the Future
23.02.2018 | Universität Bremen

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

Stagnation in the South Pacific Explains Natural CO2 Fluctuations

23.02.2018 | Earth Sciences

Mat4Rail: EU Research Project on the Railway of the Future

23.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>