Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT creates new oil-repelling material

06.12.2007
Many applications in aviation, more

MIT engineers have designed the first simple process for manufacturing materials that strongly repel oils. The material, which can be applied as a flexible surface coating, could have applications in aviation, space travel and hazardous waste cleanup.

For example, the material could be used to help protect parts of airplanes or rockets that are vulnerable to damage from being soaked in fuel, such as rubber gaskets and o-rings.

“These are vulnerable points in many aerospace applications” said Robert Cohen, the St. Laurent Professor of Chemical Engineering and an author of a paper on the work that will appear in the Dec. 7 issue of Science.

“It would be nice if you could spill gasoline on a fabric or a gasket or other surface and find that instead of spreading, it just rolled off,” Cohen said.

Creating a strongly oil-repelling, or “oleophobic” material, has been challenging for scientists, and there are no natural examples of such a material.

“Nature has developed a lot of methods for waterproofing, but not so much oil-proofing,” said Gareth McKinley, MIT School of Engineering Professor of Teaching Innovation in the Department of Mechanical Engineering and a member of the research team. “The conventional wisdom was that it couldn't be done on a large scale without very special lithographic processes.”

The tendency of oils and other hydrocarbons to spread out over surfaces is due to their very low surface tension (a measure of the attraction between molecules of the same substance).

Water, on the other hand, has a very high surface tension and tends to form droplets. For example, beads of water appear on a freshly waxed car (however, over a period of time, oil and grease contaminate the surface and the repellency fades). That difference in surface tension also explains why water will roll off the feathers of a duck, but a duck coated in oil must be washed with soap to remove it.

The MIT team overcame the surface-tension problem by designing a material composed of specially prepared microfibers that essentially cushion droplets of liquid, allowing them to sit, intact, just above the material's surface.

When oil droplets land on the material, which resembles a thin fabric or tissue paper, they rest atop the fibers and pockets of air trapped between the fibers. The large contact angle between the droplet and the fibers prevents the liquid from touching the bottom of the surface and wetting it.

The microfibers are a blend of a specially synthesized molecule called fluoroPOSS, which has an extremely low surface energy, and a common polymer. They can be readily deposited onto many types of surfaces, including metal, glass, plastic and even biological surfaces such as plant leaves, using a process known as electrospinning.

The researchers have also developed some dimensionless design parameters that can predict how stable the oleophobicity or oil- resistance between a particular liquid and a surface will be. These design equations are based on structural considerations, particularly the re-entrant nature (or concavity) of the surface roughness, and on three other factors: the liquid's surface tension, the spacing of the fibers, and the contact angle between the liquid and a flat surface.

Using these relationships, the researchers can design fiber mats that are optimized to repel different hydrocarbons. They have already created a non-woven fabric that can separate water and octane (jet fuel), which they believe could be useful for hazardous waste cleanup.

The Air Force, which funded the research and developed the fluoroPOSS molecules, is interested in using the new material to protect components of airplanes and rockets from jet fuel.

Lead author of the paper is Anish Tuteja, a postdoctoral associate in MIT's Department of Chemical Engineering. Other MIT authors are Wonjae Choi, graduate student in mechanical engineering, Minglin Ma, graduate student in chemical engineering, and Gregory Rutledge, professor of chemical engineering. Joseph Mabry and Sarah Mazzella of the Air Force Research Laboratory at Edwards Air Force Base are also authors on the paper.

MIT News Office | Elizabeth A. Thomson
Further information:
http://www.mit.edu

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>