Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Argonne scientists use unique diamond anvils to view oxide glass structures under pressure

14.11.2007
Researchers at the U.S. Department of Energy's Argonne National Laboratory have used a uniquely-constructed perforated diamond cell to investigate oxide glass structures at high pressures in unprecedented detail.

Argonne physicist Chris Benmore and postdoctoral appointee Qiang Mei, along with colleagues at the University of Arizona, used microscopic laser-perforated diamond anvil cells to generate pressures of up to 32 gigapascals (GPa) – roughly one-tenth the pressure at the center of the Earth. By "squashing" vitreous (glassy) arsenic oxide samples between the anvils, the researchers were able to determine the mechanism behind the structure's atypical behavior under high-pressure.

This research may have far-reaching affects in the geophysical sciences, Benmore said, because oxide glasses and liquids represent a significant percentage of the materials that make up the Earth. For example, knowing the atomic structure of oxide materials at high pressures may give scientists a window on the behaviors of magma during the formation of the early Earth and moon. "We now have a technique where we can look a lot of different silicate glasses that are relevant to the Earth's process and at the complex behaviors of the melts that formed the Earth’s mantle," he said.

During their investigation, Benmore and Mei noticed that if arsenic oxide was subjected to high pressures the material underwent an unusual transformation at about 20 GPa, as the color of the compound changed from transparent to red. However, they did not know the atomic cause for this behavior.

By performing x-ray pair distribution function experiments at Argonne's Advanced Photon Source (APS), however, Benmore and Mei were able to see the atomic reconfiguration that produced the color change. Arsenic oxide, at normal pressures, typically exists in isolated molecular "cages" in which four arsenic atoms are surrounded by three oxygen atoms apiece – each of the six oxygen atoms is bounded to two arsenic atoms. When the pressure rose above 20 GPa, however, many of these molecular cages collapsed, creating new isomers in which each arsenic atom was bonded to six oxygen atoms.

Regular diamond anvils could not be used because they caused a great deal of background scattering that obscured the signal from the material. Previous experiments on vitreous materials had used mechanically drilled diamond anvil cells to create the high pressures, but these routinely failed at pressures above 15 GPa. This experiment involved one of the first-ever uses of laser-perforated diamond anvils combined with micro-focused high energy x-ray diffraction techniques, which have the ability to generate high pressures without also producing background noise.

Benmore hopes to extend his research to liquid oxides and silicates by heating them pass their melting points. By doing so, he expects to gain a better understanding of the structural transition, which is expected to occur more abruptly and be reversible in the liquid phases of these materials.

Angela Hardin | EurekAlert!
Further information:
http://www.anl.gov

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>