Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plastic with changeable conductivity developed by chemical engineer

11.04.2007
Dr. Yueh-Lin (Lynn) Loo at The University of Texas at Austin has modified a plastic so its ability to carry an electrical current can be altered during manufacturing to meet the needs of future electronic devices.

Loo, an assistant professor of chemical engineering, studies the plastic called polyaniline because it could serve as flexible, inexpensive wiring in future products such as military camouflage that changes colors, foldable electronic displays and medical sensors.

By combining polyaniline with a chemical that gives it conductivity, Loo discovered she could increase the plastic’s conductivity one- to six-fold based on the version of the chemical added. The results involving the chemical polymer acid were published in the April 7 issue of the Journal of Materials Chemistry.

Chemically altered polyaniline has several advantages over the more commonly used metals, like gold and copper, in devices other than computers. For example, Loo’s previous research has demonstrated that “doped” polyaniline can be manufactured in solution at room temperatures and without vacuum chambers. Producing metal-based wires requires special manufacturing conditions in addition to the high cost of the metals.

Since Loo’s laboratory submitted their research to the Journal of Materials Chemistry, they have developed a version of polyaniline whose conductivity is 10 times higher than before. However, that level of electrical conductivity still doesn’t rival that of copper, which is used to produce high-speed interconnections.

That effort will be based on the greater understanding Loo has gained of the polyaniline/polymer acid described in the Journal of Materials Chemistry article. In the article, graduate student Joung Eun Yoo and other members of Loo’s laboratory began determining how higher-mass versions of polymer acid improve the plastic’s conductivity when the two materials are combined. So far, they have learned that the higher mass acids attach to the plastic in longer chains, and induce a less-ordered internal structure (crystallinity) within the plastic.

“Understanding how the structure of this polyaniline material changes when its conductivity changes will be crucial for selecting the right material for different consumer applications,” Loo said.

She noted that the ability of the plastic to change colors depending on whether it was conductive or not could be especially useful.

“Its general versatility could lead to a variety of new consumer products in upcoming years,” she said.

Loo has begun collaborating with Research Professor Adam Heller at the university to investigate using polyaniline as part of a sensor material in medical devices. Heller previously developed two commercially available devices to monitor glucose levels in people with diabetes.

Loo’s latest published research was funded by a Young Investigator Award she received in 2005 from the Arnold and Mabel Beckman Foundation, and by a Dupont Young Professor Grant. Loo’s innovative research also has led to her selection in 2004 as one of Technology Review's Top 100 Young Investigators, the same year she received a National Science Foundation CAREER Award.

Barbra Rodriguez | EurekAlert!
Further information:
http://www.engr.utexas.edu

More articles from Materials Sciences:

nachricht Let the good tubes roll
19.01.2018 | DOE/Pacific Northwest National Laboratory

nachricht Method uses DNA, nanoparticles and lithography to make optically active structures
19.01.2018 | Northwestern University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>