Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-aligning liquid crystal technique could simplify manufacture of display devices

25.09.2006
A new technique for creating vertical alignment among liquid crystal molecules could allow development of less costly flexible displays and lead to a better understanding of the factors that govern operation of the popular liquid crystal display systems.

Liquid crystals are a key component of the displays used in most laptop computers and the increasingly-popular flat panel televisions. Controlled by a network of transistors, the liquid crystals change their optical characteristics in response to electrical signals to create the text and images we see.

Manufacture of the panels is complex, requiring multiple steps that can introduce defects. Among the steps is the application of a polymer film – the so-called alignment layer – to the two pieces of glass between which the liquid crystals operate. The film, which must be rubbed after being coated on the glass, anchors the crystals with a fixed alignment. The process of rubbing to create the necessary alignment can damage some of the transistors and introduce dust, producing defects that can reduce the manufacturing yield of the panels.

By adding side chains to the polymer molecules, researchers at the Georgia Institute of Technology have found a way to eliminate the polymer rubbing step. Instead, they use the in-situ photopolymerization of alkyl acrylate monomers in the presence of nematic liquid crystals to provide a cellular matrix of liquid crystalline droplets in which the chemical structure of the encapsulating polymer controls the liquid crystal alignment.

"Small changes in the chemical nature of the polymer will change the alignment of the molecules at surfaces," said Mohan Srinivasarao, a professor in Georgia Tech's School of Polymer, Textile and Fiber Engineering. "It turns out that this can be done over a fairly large area, and it is reproducible. This would be an alternative way to create the alignment that is needed in these devices."

Srinivasarao described the self-aligning of liquid crystals on September 14th at the 232nd national meeting of the American Chemical Society in San Francisco. His presentation was part of the session "Organic Thin Films for Photonic Applications."

Beyond the potential for simplifying the manufacture of liquid crystal devices, the self-aligning technique could also be used in new types of diffraction gratings.

Srinivasarao and collaborators Jung Ok Park and Jian Zhou have used the technique and a nematic material with negative dielectric anisotropy to fabricate highly flexible liquid crystal devices that have high contrast and fast response times – without using an alignment layer. Control is obtained by variation of the alkyl side chains and through copolymerization of two dissimilar monofunctional acrylates.

Beyond simplifying the fabrication process and potentially increasing device yield, the technique also offers other advantages. Because devices are based on vertical alignment of the liquid crystals, their "off" state can be made completely dark. In addition, the liquid crystals provide strong binding between the two substrate surfaces, making the resulting display less sensitive to mechanical deformations and pressure – ideal for flexible displays that lack the structure provided by glass plates.

Though the technique developed at Georgia Tech offers advantages over existing systems, Srinivasarao doesn't expect a change in the way the current generation of laptop screens and televisions are made. That's because existing manufacturing processes are mature and changing them probably can't be justified economically.

But beyond applications to future flexible displays, what the researchers learn from their approach could apply to the next generation of display devices based on liquid crystals.

"When we make this polymer, the molecules automatically generate the alignment," Srinivasarao said. "We are interested now in figuring out what is responsible for making that happen. We want to link the chemical nature of these polymeric materials to how the liquid crystal molecules behave at the surface."

Current displays use polyimides for an alignment layer because these materials are heat resistant and can be used over a broad range of temperatures for extended periods of time. The alkyl acrylates that Srinivasarao and his colleagues are using lack that same robustness, so material improvements would be needed before they could be used to manufacture flexible displays.

"If we can show similar results – switching times faster than 30 milliseconds and high contrast ratios – with more robust polymeric materials, then we could say that this approach would be viable," he said.

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Materials Sciences:

nachricht Let the good tubes roll
19.01.2018 | DOE/Pacific Northwest National Laboratory

nachricht Method uses DNA, nanoparticles and lithography to make optically active structures
19.01.2018 | Northwestern University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>