Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-aligning liquid crystal technique could simplify manufacture of display devices

25.09.2006
A new technique for creating vertical alignment among liquid crystal molecules could allow development of less costly flexible displays and lead to a better understanding of the factors that govern operation of the popular liquid crystal display systems.

Liquid crystals are a key component of the displays used in most laptop computers and the increasingly-popular flat panel televisions. Controlled by a network of transistors, the liquid crystals change their optical characteristics in response to electrical signals to create the text and images we see.

Manufacture of the panels is complex, requiring multiple steps that can introduce defects. Among the steps is the application of a polymer film – the so-called alignment layer – to the two pieces of glass between which the liquid crystals operate. The film, which must be rubbed after being coated on the glass, anchors the crystals with a fixed alignment. The process of rubbing to create the necessary alignment can damage some of the transistors and introduce dust, producing defects that can reduce the manufacturing yield of the panels.

By adding side chains to the polymer molecules, researchers at the Georgia Institute of Technology have found a way to eliminate the polymer rubbing step. Instead, they use the in-situ photopolymerization of alkyl acrylate monomers in the presence of nematic liquid crystals to provide a cellular matrix of liquid crystalline droplets in which the chemical structure of the encapsulating polymer controls the liquid crystal alignment.

"Small changes in the chemical nature of the polymer will change the alignment of the molecules at surfaces," said Mohan Srinivasarao, a professor in Georgia Tech's School of Polymer, Textile and Fiber Engineering. "It turns out that this can be done over a fairly large area, and it is reproducible. This would be an alternative way to create the alignment that is needed in these devices."

Srinivasarao described the self-aligning of liquid crystals on September 14th at the 232nd national meeting of the American Chemical Society in San Francisco. His presentation was part of the session "Organic Thin Films for Photonic Applications."

Beyond the potential for simplifying the manufacture of liquid crystal devices, the self-aligning technique could also be used in new types of diffraction gratings.

Srinivasarao and collaborators Jung Ok Park and Jian Zhou have used the technique and a nematic material with negative dielectric anisotropy to fabricate highly flexible liquid crystal devices that have high contrast and fast response times – without using an alignment layer. Control is obtained by variation of the alkyl side chains and through copolymerization of two dissimilar monofunctional acrylates.

Beyond simplifying the fabrication process and potentially increasing device yield, the technique also offers other advantages. Because devices are based on vertical alignment of the liquid crystals, their "off" state can be made completely dark. In addition, the liquid crystals provide strong binding between the two substrate surfaces, making the resulting display less sensitive to mechanical deformations and pressure – ideal for flexible displays that lack the structure provided by glass plates.

Though the technique developed at Georgia Tech offers advantages over existing systems, Srinivasarao doesn't expect a change in the way the current generation of laptop screens and televisions are made. That's because existing manufacturing processes are mature and changing them probably can't be justified economically.

But beyond applications to future flexible displays, what the researchers learn from their approach could apply to the next generation of display devices based on liquid crystals.

"When we make this polymer, the molecules automatically generate the alignment," Srinivasarao said. "We are interested now in figuring out what is responsible for making that happen. We want to link the chemical nature of these polymeric materials to how the liquid crystal molecules behave at the surface."

Current displays use polyimides for an alignment layer because these materials are heat resistant and can be used over a broad range of temperatures for extended periods of time. The alkyl acrylates that Srinivasarao and his colleagues are using lack that same robustness, so material improvements would be needed before they could be used to manufacture flexible displays.

"If we can show similar results – switching times faster than 30 milliseconds and high contrast ratios – with more robust polymeric materials, then we could say that this approach would be viable," he said.

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>