Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-aligning liquid crystal technique could simplify manufacture of display devices

25.09.2006
A new technique for creating vertical alignment among liquid crystal molecules could allow development of less costly flexible displays and lead to a better understanding of the factors that govern operation of the popular liquid crystal display systems.

Liquid crystals are a key component of the displays used in most laptop computers and the increasingly-popular flat panel televisions. Controlled by a network of transistors, the liquid crystals change their optical characteristics in response to electrical signals to create the text and images we see.

Manufacture of the panels is complex, requiring multiple steps that can introduce defects. Among the steps is the application of a polymer film – the so-called alignment layer – to the two pieces of glass between which the liquid crystals operate. The film, which must be rubbed after being coated on the glass, anchors the crystals with a fixed alignment. The process of rubbing to create the necessary alignment can damage some of the transistors and introduce dust, producing defects that can reduce the manufacturing yield of the panels.

By adding side chains to the polymer molecules, researchers at the Georgia Institute of Technology have found a way to eliminate the polymer rubbing step. Instead, they use the in-situ photopolymerization of alkyl acrylate monomers in the presence of nematic liquid crystals to provide a cellular matrix of liquid crystalline droplets in which the chemical structure of the encapsulating polymer controls the liquid crystal alignment.

"Small changes in the chemical nature of the polymer will change the alignment of the molecules at surfaces," said Mohan Srinivasarao, a professor in Georgia Tech's School of Polymer, Textile and Fiber Engineering. "It turns out that this can be done over a fairly large area, and it is reproducible. This would be an alternative way to create the alignment that is needed in these devices."

Srinivasarao described the self-aligning of liquid crystals on September 14th at the 232nd national meeting of the American Chemical Society in San Francisco. His presentation was part of the session "Organic Thin Films for Photonic Applications."

Beyond the potential for simplifying the manufacture of liquid crystal devices, the self-aligning technique could also be used in new types of diffraction gratings.

Srinivasarao and collaborators Jung Ok Park and Jian Zhou have used the technique and a nematic material with negative dielectric anisotropy to fabricate highly flexible liquid crystal devices that have high contrast and fast response times – without using an alignment layer. Control is obtained by variation of the alkyl side chains and through copolymerization of two dissimilar monofunctional acrylates.

Beyond simplifying the fabrication process and potentially increasing device yield, the technique also offers other advantages. Because devices are based on vertical alignment of the liquid crystals, their "off" state can be made completely dark. In addition, the liquid crystals provide strong binding between the two substrate surfaces, making the resulting display less sensitive to mechanical deformations and pressure – ideal for flexible displays that lack the structure provided by glass plates.

Though the technique developed at Georgia Tech offers advantages over existing systems, Srinivasarao doesn't expect a change in the way the current generation of laptop screens and televisions are made. That's because existing manufacturing processes are mature and changing them probably can't be justified economically.

But beyond applications to future flexible displays, what the researchers learn from their approach could apply to the next generation of display devices based on liquid crystals.

"When we make this polymer, the molecules automatically generate the alignment," Srinivasarao said. "We are interested now in figuring out what is responsible for making that happen. We want to link the chemical nature of these polymeric materials to how the liquid crystal molecules behave at the surface."

Current displays use polyimides for an alignment layer because these materials are heat resistant and can be used over a broad range of temperatures for extended periods of time. The alkyl acrylates that Srinivasarao and his colleagues are using lack that same robustness, so material improvements would be needed before they could be used to manufacture flexible displays.

"If we can show similar results – switching times faster than 30 milliseconds and high contrast ratios – with more robust polymeric materials, then we could say that this approach would be viable," he said.

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Materials Sciences:

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>