Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Problem: Implant Infection. Solution: Nanotech Surfaces

10.07.2006
For the first time, engineers have created surfaces for orthopaedic implants that reduce the presence of bacteria. The research, led by Brown University engineer Thomas Webster, may lead to a new class of artificial joints. That is a big market: More than 750,000 Americans undergo knee, hip or shoulder replacement surgery each year.

Orthopaedic implants help millions of Americans stay active. But these medical devices are prone to infection, forcing patients back to surgery for repair or replacement. Now, for the first time, a team of engineers has shown that zinc or titanium oxide nanosurfaces can reduce the presence of bacteria, a technique that can be applied to implants to reduce the number of these costly and debilitating infections.


Microcraters and nanosurfaces

A rougher terrain engineered on the nanoscale (top) promoted bone adhesion and inhibited bacterial growth much better than the smoother surface engineered on the microscale (bottom). Units are in microns. Image: T.J. Webster

Thomas Webster, an associate professor of engineering at Brown, led the research. Results are published in the Journal of Biomedical Materials Research.

“We’ve found a method of coating implants that discourages bacteria growth,” Webster said, “and it does so significantly. The hope is that this technique will lead to safer, longer-lasting implants.”

According to the American Academy of Orthopaedic Surgeons, 766,100 Americans underwent surgery for hip, knee and shoulder replacements in 2002. During typical procedures, surgeons remove an arthritic or damaged joint and replace it with an artificial one. In about 1 to 2 percent of cases, the implant gets infected. The most common culprit: Staphylococcus epidermidis. Found on skin or in mucous membrane, S. epidermidis can enter a surgical wound and adhere to an implant. The bacteria multiply, causing a slimy layer, or biofilm, to form around the implant. The slime is tough stuff, acting as a physical and chemical barrier that resists antibiotics. The result is additional surgery to clean the implant or replace it outright.

Webster, along with former Purdue University colleagues Gabriel Colon and Brian Ward, knew that abrading or coating implants to produce microscopic bumps, which create a sand-papery surface, aid in bone growth. This helps anchor the implant in the body and extends its life. Some artificial joints now sport these microstructured surfaces.

But the team wondered if smaller peaks and craters – ones that measure on the nanometer scale – would work even better. And how would bacteria react? So they experimented.

The engineers chose zinc and titanium oxides as their materials. Zinc oxide is a well-known antimicrobial agent. Titanium oxide, strong and light, is a commonly used in implants. Engineers took nanoparticles of these ceramics and pressed them into dime-sized discs. They took microparticles of these same materials and made more discs. Discs with nanostructured surfaces had bumps that measured only .023 microns in diameter. Discs with microstructured surfaces had bumps that measured about 5 microns in diameter. Under a microscope, the surface differences are extreme; the nanostructured discs look like saw-toothed mountains, the microstructured discs look like smooth plateaus.

The engineers put S. epidermidis on the discs and waited an hour. Then they counted the bacteria. The results were dramatic. Microstructured zinc oxide discs were host to 1,000 times more bacteria than the nanostructured zinc oxide discs. Similar, but less striking, results were duplicated on titanium oxide discs.

The engineers conducted similar experiments with bone-forming cells and found that twice as many of these cells grew and formed bone on nanostructured discs. Other indicators of healthy bone growth, such as collagen synthesis, were also stronger with nanostructured discs.

“Surface area seems to be key,” Webster said. “With the nanostructured surfaces we created, surface area increased by 25 to 35 percent. We think that this additional area, along with the unique surface energetics of these nanomaterials, gave bone-forming cells more places to adhere. But with bacteria, increased surface area may work the other way, exposing the bugs to more of the germ-fighting properties of the zinc oxide.”

The National Science Foundation funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>