Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Problem: Implant Infection. Solution: Nanotech Surfaces

10.07.2006
For the first time, engineers have created surfaces for orthopaedic implants that reduce the presence of bacteria. The research, led by Brown University engineer Thomas Webster, may lead to a new class of artificial joints. That is a big market: More than 750,000 Americans undergo knee, hip or shoulder replacement surgery each year.

Orthopaedic implants help millions of Americans stay active. But these medical devices are prone to infection, forcing patients back to surgery for repair or replacement. Now, for the first time, a team of engineers has shown that zinc or titanium oxide nanosurfaces can reduce the presence of bacteria, a technique that can be applied to implants to reduce the number of these costly and debilitating infections.


Microcraters and nanosurfaces

A rougher terrain engineered on the nanoscale (top) promoted bone adhesion and inhibited bacterial growth much better than the smoother surface engineered on the microscale (bottom). Units are in microns. Image: T.J. Webster

Thomas Webster, an associate professor of engineering at Brown, led the research. Results are published in the Journal of Biomedical Materials Research.

“We’ve found a method of coating implants that discourages bacteria growth,” Webster said, “and it does so significantly. The hope is that this technique will lead to safer, longer-lasting implants.”

According to the American Academy of Orthopaedic Surgeons, 766,100 Americans underwent surgery for hip, knee and shoulder replacements in 2002. During typical procedures, surgeons remove an arthritic or damaged joint and replace it with an artificial one. In about 1 to 2 percent of cases, the implant gets infected. The most common culprit: Staphylococcus epidermidis. Found on skin or in mucous membrane, S. epidermidis can enter a surgical wound and adhere to an implant. The bacteria multiply, causing a slimy layer, or biofilm, to form around the implant. The slime is tough stuff, acting as a physical and chemical barrier that resists antibiotics. The result is additional surgery to clean the implant or replace it outright.

Webster, along with former Purdue University colleagues Gabriel Colon and Brian Ward, knew that abrading or coating implants to produce microscopic bumps, which create a sand-papery surface, aid in bone growth. This helps anchor the implant in the body and extends its life. Some artificial joints now sport these microstructured surfaces.

But the team wondered if smaller peaks and craters – ones that measure on the nanometer scale – would work even better. And how would bacteria react? So they experimented.

The engineers chose zinc and titanium oxides as their materials. Zinc oxide is a well-known antimicrobial agent. Titanium oxide, strong and light, is a commonly used in implants. Engineers took nanoparticles of these ceramics and pressed them into dime-sized discs. They took microparticles of these same materials and made more discs. Discs with nanostructured surfaces had bumps that measured only .023 microns in diameter. Discs with microstructured surfaces had bumps that measured about 5 microns in diameter. Under a microscope, the surface differences are extreme; the nanostructured discs look like saw-toothed mountains, the microstructured discs look like smooth plateaus.

The engineers put S. epidermidis on the discs and waited an hour. Then they counted the bacteria. The results were dramatic. Microstructured zinc oxide discs were host to 1,000 times more bacteria than the nanostructured zinc oxide discs. Similar, but less striking, results were duplicated on titanium oxide discs.

The engineers conducted similar experiments with bone-forming cells and found that twice as many of these cells grew and formed bone on nanostructured discs. Other indicators of healthy bone growth, such as collagen synthesis, were also stronger with nanostructured discs.

“Surface area seems to be key,” Webster said. “With the nanostructured surfaces we created, surface area increased by 25 to 35 percent. We think that this additional area, along with the unique surface energetics of these nanomaterials, gave bone-forming cells more places to adhere. But with bacteria, increased surface area may work the other way, exposing the bugs to more of the germ-fighting properties of the zinc oxide.”

The National Science Foundation funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Materials Sciences:

nachricht Scientists create innovative new 'green' concrete using graphene
24.04.2018 | University of Exeter

nachricht Neutrons provide insights into increased performance for hybrid perovskite solar cells
24.04.2018 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>