Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ’metal sandwich’ may break superconductor record, theory suggests

10.05.2006


Proposed alloy could ’open the door’ in the search for promising electric superconductors



After an exhaustive data search for new compounds, researchers at Duke University’s Pratt School of Engineering have discovered a theoretical "metal sandwich" that is expected to be a good superconductor. Superconductive materials have no resistance to the flow of electric current.

The new lithium monoboride (LiB) compound is a "binary alloy" consisting of two layers of boron -- the "bread" of the atomic sandwich -- with lithium metal "filling" in between, the researchers said. Once the material is synthesized, it should be superconductive at a higher temperature than other superconductors in its class, according to their results.


The researchers reported their findings in the May 5 online edition of the journal Physical Review B, Rapid Communications.

"To the best of our knowledge, this alloy structure had not been considered before," said Stefano Curtarolo, professor of mechanical engineering and materials sciences at Duke’s Pratt School. "We have been able to identify synthesis conditions under which the LiB compound should form. And we believe that if the material can be synthesized, it should superconduct at a higher temperature, perhaps more than 10 percent greater, than any other binary alloy superconductor."

"The significance of the work is not only the discovery of lithium monoboride itself, but also that this opens the door to finding derivatives that could aid in the search for additional novel superconductors," added Aleksey Kolmogorov, lead author of the study and a postdoctoral fellow at the Pratt School. He said that once a new superconductive material is identified, scientists typically can manipulate the substance -- twisting it or doping it with other elements – to create related structures that might have even more appealing properties.

Superconductors have the potential to produce more efficient electronics and electric generators, according to the researchers. The materials also have unique magnetic capabilities that may enable their use in transportation applications, such as "levitated" trains that glide over their tracks with virtually no friction.

However, today’s superconductors perform only when cooled to extremely low temperatures near absolute zero, which is -459.67 degrees Fahrenheit, or 0 degrees Kelvin. This requirement makes their use prohibitively expensive, the researchers said.

The first superconductive material was identified in 1911 when a Dutch scientist cooled mercury to 4 degrees Kelvin, the temperature of liquid helium. Since then, scientists have discovered superconductivity in various materials, including other pure elements, complex ceramics, and binary alloys.

Since 1986, ceramics have held the overall record for highest superconducting temperature -- currently 138 degrees Kelvin. Among pure elements, lithium, when contained under pressure, holds the record at 20 degrees Kelvin.

Recently, scientists scored an unexpected breakthrough with the discovery of superconductivity in the simple binary alloy magnesium diboride (MgB2), Curtarolo said. This compound holds the current temperature record for its class at 39 degrees Kelvin, and it has attracted much attention because it can be produced relatively easily from two abundant elements.

"The physics of the superconductivity in MgB2 is now well understood," Kolmogorov said. "However, MgB2 has been shown to be such a unique superconductor -- finely tuned by nature -- that attempts to improve it or use it as a model for finding even better superconducting materials have so far been fruitless."

Curtarolo and Kolmogorov decided it was time to try something else. Using a theoretical data-mining method developed by Curtarolo, the pair scoured a database of experimental and hypothetical compounds, looking for other possible configurations of binary alloys and tweaking their compositions.

In the process, the team stumbled onto "a path to a new metal sandwich structure consisting of stacks of metal and boron layers," Curtarolo said.

Additional calculations identified the binary alloy lithium monoboride as a promising candidate that might be both structurally stable and superconductive at temperatures that exceed those of the current binary alloy record-holder.

"It’s a very thin line, because as you try to increase the temperature at which a material becomes superconducting, the material tends to lose its stability," Kolmogorov said. "But we think lithium monoboride should be stable and superconduct at temperatures greater than 39 degrees Kelvin."

"It was like spotting a $100 bill on the street," Curtarolo said of the finding. "It seemed impossible that this could be real and that no one had seen it before."

The researchers are now conducting more precise theoretical calculations of LiB’s "critical temperature" -- that is, the temperature at which it becomes superconductive -- with computational support from the San Diego Supercomputer Center at the University of California, San Diego.

The material will have to be synthesized before experimental tests can confirm any of the theoretical results, the researchers said. They added that this won’t be an easy process, as manufacturing lithium monoboride will require extremely high temperatures and pressures.

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>