Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover that nanoparticle shows promise in reducing radiation side effects

06.04.2006


Using transparent zebrafish embryos, researchers at Jefferson Medical College in Philadelphia have shown that a microscopic nanoparticle can help fend off damage to normal tissue from radiation. The nanoparticle, a soccer ball-shaped, hollow, carbon-based structure known as a fullerene, acts like an "oxygen sink," binding to dangerous oxygen radicals produced by radiation.



The scientists, led by Adam P. Dicker, M.D., Ph.D., and Ulrich Rodeck, M.D., see fullerenes as a potentially "new class of radioprotective agents." Dr. Dicker, recently appointed Vice-Chair for Translational Research of the Radiation Therapy Oncology Group, is associate professor of radiation oncology at Jefferson Medical College of Thomas Jefferson University and at the Kimmel Cancer Center at Jefferson. Dr. Rodeck is professor of dermatology at Jefferson Medical College. They will present their team’s results April 5, 2006 at the annual meeting of American Association for Cancer Research in Washington, D.C.

While chemotherapy and radiotherapy are the standard treatments for cancer, they take their respective toll on the body. Radiation can damage epithelial cells and lead to permanent hair loss, among other effects, and certain types of systemic chemotherapy can produce hearing loss and damage to a number of organs, including the heart and kidneys. Some other side effects include esophagitis, diarrhea, and mouth and intestinal ulcers.


To date, only one drug, Amifostine, has been approved by the federal Food and Drug Administration, to help protect normal tissue from the side effects of chemotherapy and radiation. Researchers would like to develop new and improved agents.

Dr. Dicker, director of the Division of Experimental Radiation Oncology at Jefferson Medical College, and his group were exploring the molecular mechanisms responsible for cellular damage from radiation. They collaborated with a Houston-based drug company, C Sixty, and studied its radiation-protective agent, CD60_DF1.

To test how well it worked, they turned to tiny zebrafish embryos, which are transparent for the first month of life and allow scientists to observe closely organ damage produced by cancer treatments. Zebrafish have most of their organs formed by the third day after fertilization.

They gave the embryos different doses of ionizing radiation as well as treatment by either Amifostine, which acted as a control agent, or CD60_DF1. First, they found that CD60_DF1 had almost no toxicity. Then, they saw that CD60_DF1 given before and even immediately after--up to 30 minutes--exposure to X-rays reduced organ damage by one-half to two-thirds, which was as good as the level of protection given by Amifostine.

"We also showed that the fullerene provided organ-specific protection," Dr. Dicker notes. "It protected the kidney from radiation-induced damage, for example, as well as certain parts of the nervous system."

He explains that one way that radiation frequently damages cells and tissues is by producing "reactive oxygen species"--oxygen radicals, peroxides and hydroxyls. The scientists showed that zebrafish embryos exposed to ionizing radiation had more than 50 percent reduction in the production of reactive oxygen species compared to untreated embryos.

Dr. Dicker says that the company has technology enabling certain molecules to be attached to the nanoparticles, which will allow for targeting to specific tissue and organs, further enhancing use of the nanoparticles.

Dr. Dicker and his team plan follow-up studies using mouse models that will allow them to find out whether fullerene protects the entire animal from radiation, and how it works to protect specific organs. They also are interested in exploring its ability to prevent long-term side effects of radiation, such as fibrosis.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Materials Sciences:

nachricht Mat4Rail: EU Research Project on the Railway of the Future
23.02.2018 | Universität Bremen

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>