Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart plastics change shape with light

14.04.2005


Many potential applications



Picture a flower that opens when facing the sunlight. In work that mimics that sensitivity to light, an MIT engineer and German colleagues have created the first plastics that can be deformed and temporarily fixed in a second, new shape by illumination with light having certain wavelengths. These programmed materials will only switch back to their original shape when exposed to light of specific different wavelengths.

The work, to be reported in the April 14 issue of Nature, could have potential applications in a variety of fields, including minimally invasive surgery. Imagine, for example, a "string" of plastic that a doctor threads into the body through a tiny incision. When activated by light via a fiber-optic probe, that slender string might change into a corkscrew-shaped stent for keeping blood vessels open.


What about staples that open on command, or paper clips that relax as soon as you don’t need them anymore? Again, light could do the job.

"This is really a new family of materials that can change from one shape to another by having light shined on them," said Institute Professor Robert Langer of MIT.

Langer co-authored the paper with Andreas Lendlein, Hongyan Jiang, and Oliver Jünger. Lendlein, a former MIT visiting scientist, is institute director at the GKSS research center in Teltow, Germany. With Jiang and Jünger, he is also affiliated with RWTH Aachen, Germany.

Shape Memory

Plastics with "shape-memory" that can change shape in response to a temperature increase are well known. In 2001 Langer and Lendlein were the first to report biodegradable versions of these materials in the Proceedings of the National Academy of Sciences.

A year later the researchers introduced thermoplastic, biodegradable shape-memory polymers and demonstrated a nifty application giving a flavor of the innovation potential in the medical field: a smart suture that ties itself into the perfect knot. That work was described in the journal Science; mnemoScience GmbH of Aachen, Germany was developed to commercialize the discovery.

"Now instead of heat , we can induce the shape-memory effect in polymers with light," said Lendlein.

Key to the work: "molecular switches," or photosensitive groups that are grafted onto a permanent polymer network. The resulting photosensitive polymer film is then stretched with an external stress, and illuminated with ultraviolet light of a certain wavelength. This prompts the molecular switches to crosslink, or bind one to another.

The result? When the light is switched off and the external stress released, the crosslinks remain, maintaining an elongated structure. Exposure to light of another wavelength cleaves the new bonds, allowing the material to spring back to its original shape.

The team notes that in addition to elongated films, a variety of other temporary shapes can be produced. For example, a spiral can be created by exposing only one side of the stretched sample to light. The result is the formation of two layers. So "while the deformation is well-fixed for [the irradiated] layer, the other keeps its elasticity. As a result, one contracts much more than the other when the external stress is released, forming an arch or corkscrew spiral shape," the authors write.

The team has also shown that the temporary shapes are "very stable for long times even when heated to 50 degrees C."

"In our Nature paper, the basic principle of photo-induced shape-memory polymers is explained. We are currently developing medical and industrial applications using their photosensitivity," Lendlein said.

The work was funded in part by a BioFuture Award from the Bundesministerium für Bildung und Forschung, Germany, and a fellowship from the Alexander von Humboldt Foundation.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>