Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Searing Heat, Little Package

01.07.2004


High-temperature lab-on-a-chip can get hotter than surface of Venus

Engineers have created a miniature hotplate that can reach temperatures above 1100°C (2012°F), self-contained within a "laboratory" no bigger than a child’s shoe.

The micro-hotplates are only a few dozen microns across (roughly the width of a human hair), yet are capable of serving as substrates, heaters and conductors for thin-film experiments ranging from material analyses to the development of advanced sensors.

Researchers at Boston MicroSystems, Inc. craft the hotplates out of silicon carbide, a strong robust material that can tolerate extreme heat and reach peak temperature in less than one thousandth of a second.

Silicon carbide is not only stable at high temperatures, it is also impervious to chemical attack from most materials. As a result, the hotplates can be cleaned by merely burning the dirt and debris off the surface.

Contained on a microchip, the tiny "labs" reside within a polycarbonate chamber that can endure near-vacuum pressures. Ports on the chamber’s sides allow gases to pass through and feed experiments, and because of the chamber’s transparency, researchers can observe experiments with a microscope as they progress.

The hotplates also contain an integrated temperature gauge and a pair of electrodes. These components allow researchers to test the electrical properties of various materials that may be deposited onto the hotplates.Using the stable, thin-film deposition properties and integrated circuitry of the hotplates, One aresearchers are already developingis an applications such as oxygen and engine emission sensors. The sensor may have several advantages over devices in today’s combustion engines, due to the micro-hotplate’s chemical stability, small size, rapid response and low power consumption.

The techniques necessary for crafting and optimizing these micro electro-mechanical systems (MEMS) were developed with support from the National Science Foundation Small Business Innovation Research (SBIR) program and SBIR programs at the Department of Energy, Environmental Protection Agency, and NASA.

Comments from the researchers:

"High-temperature silicon carbide micro-hotplates are new to the research community and may prove to be flexible tools for optics, chemical vapor deposition chambers, micro-reactors and other applications." - Rick Mlcak, Boston MicroSystems

"The micro-hotplate arrays are versatile research tools-the same basic system can adapt to handle such diverse experiments as analyses of heat treatments and the characterization of new thin film materials." - Rick Mlcak, Boston MicroSystems

Comments from NSF:

"The proposed oxygen sensor may find applications in the characterization of automobile emissions and the control of oxidation and reduction reactions in ceramics and metallurgical processing." - Winslow Sargeant, the NSF SBIR program officer who oversees the Boston Microsystems award.

"The exceptionally small size and low power consumption of the micro-hotplate oxygen sensors make them particularly suited for portable instrumentation, monitoring of hazardous environments, sensing of respiration and biological processes, control of oxygen-sensitive industrial processes, and the packaging and monitoring of food." - Winslow Sargeant

Winslow Sargeant | NSF
Further information:
http://www.nsf.gov
http://www.bostonmicrosystems.com

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>