Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of the corrosive effects of the water treated in the AÑARBE reservoir purification plant

14.06.2004


Last July the Mancomunidad de AGUAS DEL AÑARBE (Association of Municipal Councils supplied with water from the Añarbe reservoir) contracted the CIDETEC Research Centre to carry out a study of the corrosive capacity of the water supply treated at the AÑARBE reservoir purification plant and supplied to households in pipes made of various materials. The Mancomunidad de Aguas del Añarbe is made up of Donostia-San Sebastian City Council and the following Town Councils; Rentería, Pasaia, Hernani, Lasarte, Oiartzun, Usurbil, Lezo, Urnieta and Astigarraga; it is the authority responsible for water supply to all these districts.



As is known, corrosion is defined as the destruction of a material under chemical or electrochemical action by its surrounding environment. The reactions and transformations involved in this corrosion are due to the thermodynamic instability in the materials of which the surrounding environment is made up, giving rise to products with properties which are different from those of the material initially. One of the first consequences of the corrosion is a weight loss of the material, with corresponding variations in the initial dimensions of the material used for piping the water. The various mechanisms of corrosion are important when considering which material to be selected for its design and its use over an acceptable period of time. Corrosion due to the effects of water follows an electrochemical mechanism; the metal together with oxygen and water forming corrosion products. In the case of steel, the corrosion products formed are ferrous hydroxide, commonly known as rust. Rust formation is very common, but unfortunately does not have the property to form a protective coating that is sufficiently compact to diminish corrosion reaction. Thus, the products formed in the corrosive process influence the behaviour of the materials in that environment. If the corrosion products generated are very compact and adherent, they tend to form a film that impedes subsequent attack on the material by the surrounding environment, as happens in the case of zinc (galvanised steel). As regards copper, it is commonly used for the supply of drinking water because of its good mechanical properties and resistance to corrosion, due to its ability to form a protective coating. Corrosion of copper only appears with certain kinds of water, appearing, moreover, in the form of pitting.

The work undertaken in the laboratory was based on the study of the corrosiveness of different materials immersed in water under constant conditions of composition and subjected to variations in temperature and concentration of oxygen. The temperatures which the materials were subjected to were: 10, 22 and 50º C which more or less emulate the temperature changes to which the water supply pipes are subjected to over the different seasons of the year and in the hot water boiler and radiator pipes in households. At the same time and for each temperature, the behaviour of each material, in the presence and in the absence of oxygen, was studied. Moreover, electrochemical means, such as the resistance to polarisation, used in this study, were used to investigate the corrosion processes of metallic surfaces. The method involved applying a small voltage sweep and, as a consequence, an electrical imbalance was produced which was translated into a measurable current. From this measurement, the rate of corrosion of a metal in an environment may be determined. The advantage of this method lies in the fact that the sweep of potential applied is so small that the metal remains practically unaltered during the measurement process.


Apart from all this, it is important to pay attention to the use of the different materials employed in these water supply networks, given the fact that, for example, if the copper and galvanised steel are used in the same circuit, it is not sufficient to connect them using insulation material. The fact that dissolved copper accelerates the corrosion of the zinc has also to be considered. This copper with the remaining zinc forms a galvanic cell, resulting in the zinc functioning as an anode and, thus, undergoing accelerated corrosion. This is why circulation first in galvanised steel pipes is recommendable. Moreover, the presence of dissolved copper in the water running through iron pipes makes this dissolved copper become copper metal, thus producing corrosion in the iron pipes. This is why it is recommended, as a measure of protection, that water is first run through iron pipes and subsequently through copper ones – in order to avoid the re-circulation of water in systems with mixed materials.

Soledad Larrocha Redondo | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=502&hizk=I
http://www.cidetec.es

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>