Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study of the corrosive effects of the water treated in the AÑARBE reservoir purification plant


Last July the Mancomunidad de AGUAS DEL AÑARBE (Association of Municipal Councils supplied with water from the Añarbe reservoir) contracted the CIDETEC Research Centre to carry out a study of the corrosive capacity of the water supply treated at the AÑARBE reservoir purification plant and supplied to households in pipes made of various materials. The Mancomunidad de Aguas del Añarbe is made up of Donostia-San Sebastian City Council and the following Town Councils; Rentería, Pasaia, Hernani, Lasarte, Oiartzun, Usurbil, Lezo, Urnieta and Astigarraga; it is the authority responsible for water supply to all these districts.

As is known, corrosion is defined as the destruction of a material under chemical or electrochemical action by its surrounding environment. The reactions and transformations involved in this corrosion are due to the thermodynamic instability in the materials of which the surrounding environment is made up, giving rise to products with properties which are different from those of the material initially. One of the first consequences of the corrosion is a weight loss of the material, with corresponding variations in the initial dimensions of the material used for piping the water. The various mechanisms of corrosion are important when considering which material to be selected for its design and its use over an acceptable period of time. Corrosion due to the effects of water follows an electrochemical mechanism; the metal together with oxygen and water forming corrosion products. In the case of steel, the corrosion products formed are ferrous hydroxide, commonly known as rust. Rust formation is very common, but unfortunately does not have the property to form a protective coating that is sufficiently compact to diminish corrosion reaction. Thus, the products formed in the corrosive process influence the behaviour of the materials in that environment. If the corrosion products generated are very compact and adherent, they tend to form a film that impedes subsequent attack on the material by the surrounding environment, as happens in the case of zinc (galvanised steel). As regards copper, it is commonly used for the supply of drinking water because of its good mechanical properties and resistance to corrosion, due to its ability to form a protective coating. Corrosion of copper only appears with certain kinds of water, appearing, moreover, in the form of pitting.

The work undertaken in the laboratory was based on the study of the corrosiveness of different materials immersed in water under constant conditions of composition and subjected to variations in temperature and concentration of oxygen. The temperatures which the materials were subjected to were: 10, 22 and 50º C which more or less emulate the temperature changes to which the water supply pipes are subjected to over the different seasons of the year and in the hot water boiler and radiator pipes in households. At the same time and for each temperature, the behaviour of each material, in the presence and in the absence of oxygen, was studied. Moreover, electrochemical means, such as the resistance to polarisation, used in this study, were used to investigate the corrosion processes of metallic surfaces. The method involved applying a small voltage sweep and, as a consequence, an electrical imbalance was produced which was translated into a measurable current. From this measurement, the rate of corrosion of a metal in an environment may be determined. The advantage of this method lies in the fact that the sweep of potential applied is so small that the metal remains practically unaltered during the measurement process.

Apart from all this, it is important to pay attention to the use of the different materials employed in these water supply networks, given the fact that, for example, if the copper and galvanised steel are used in the same circuit, it is not sufficient to connect them using insulation material. The fact that dissolved copper accelerates the corrosion of the zinc has also to be considered. This copper with the remaining zinc forms a galvanic cell, resulting in the zinc functioning as an anode and, thus, undergoing accelerated corrosion. This is why circulation first in galvanised steel pipes is recommendable. Moreover, the presence of dissolved copper in the water running through iron pipes makes this dissolved copper become copper metal, thus producing corrosion in the iron pipes. This is why it is recommended, as a measure of protection, that water is first run through iron pipes and subsequently through copper ones – in order to avoid the re-circulation of water in systems with mixed materials.

Soledad Larrocha Redondo | Basque research
Further information:

More articles from Materials Sciences:

nachricht How nanoscience will improve our health and lives in the coming years
27.10.2016 | University of California - Los Angeles

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>