Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough polymer for bone repair

24.05.2004


A breakthrough in polymer development means that soon there may be a radical new treatment for people with broken bones - a special kind of material that can ’glue’ the bone back together and support it while it heals.



The material is designed to break down as the bone regrows leaving only natural tissue.

Scientists at CSIRO Molecular Science have developed a biodegradable polymer that can be used in the human body. Not only is it biodegradable and biocompatible, it can be formulated as an injectable gel which cures in-situ or on-demand by promoting tissue growth. The polymer’s rate of degradation can also be controlled.


"Synthetic polymers offer a number of advantages over ceramic and natural polymer-based materials," says CSIRO Molecular Science Chief, Dr Annabelle Duncan,

"We envisage that this polymer technology could be tailored for applications in orthopaedics, orthodontics, drug delivery, wound care, tissue engineering and cartilage repair," Dr Duncan says

One of the inventors of the polymer, Dr Thilak Gunatillake, plans to apply it initially in the form of a bone glue for fracture repair.

He says that the material has a distinct advantage in this area due to its combination of injectability, adhesiveness and excellent mechanical strength.

Further research is planned to demonstrate the polymer’s ability to deliver cells or biological agents to accelerate tissue regrowth.

"The use of the polymer for guided bone regrowth is not only applicable to the orthopaedic area, but also in related applications such as periodontal surgery and dental implants", Dr Gunatillake says.

A spin-off company, Polymerco Pty Ltd, has been established by CSIRO and Xceed Biotechnology to develop this revolutionary new biodegradable polymer technology for medical device applications.

"Xceed will invest $5.1 million into Polymerco and both CSIRO and Xceed will own 50 per cent," says the Chief Executive Officer of Xceed Biotechnology, Mr David McAuliffe,

"The formation of PolymerCo Pty Ltd is an exciting development and an example of CSIRO’s commercialisation strategy in action. We are looking forward to a profitable relationship with CSIRO as we progress the technology through to products."

CSIRO and Polymerco inventors are presenting papers on the new technology at the 7thWorld Biomaterials Congress in Sydney from 17 to 21 May, 2004.

More information:

Dr Thilak Gunatillake, CSIRO Molecular Science, 03 9545 2501, mobile: 0409 253 325
Mr David McAuliffe, Xceed Biotechnology, 08 92781866

Media Assistance:

David Down, CSIRO Molecular Science, 02 9490 5220, mobile: 0419 125 220
Email: david.down@csiro.au

Margie Livingston, Porter Novelli, mobile: 0438 661 131
Email: margieliv@iinet.net.au

Bill Stephens | CSIRO
Further information:
http://www.csiro.au/index.asp?type=mediaRelease&id=PrPolymer2

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>