Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemist’s technique enables creation of novel carbon nanoparticles

11.05.2004


A technique developed by Karen Wooley has proved vital in the creation of novel carbon nanoparticles with colleagues at Carnegie Mellon University.


Wooley technique ’linchpin’ to success

Using a technique pioneered by Washington University in St. Louis chemist Karen Wooley, Ph.D., scientists have developed a novel way to make discrete carbon nanoparticles for electrical components used in industry and research.

The method uses polyacrylonitrile (PAN) as a nanoparticle precursor and is relatively low cost, simple and potentially scalable to commercial production levels. It provides significant advantages over existing technologies to make well-defined nanostructured carbons. Using the method, PAN copolymers serving as carbon precursors can be deposited as thin films on surfaces (for example, silicon wafers), where they can be patterned and further processed using techniques currently employed to fabricate microelectronic devices. Such a seamless manufacturing process is important to generate integrated devices and would be difficult to achieve with other methods currently used to synthesize nanostructured carbons, said Tomasz Kowalewski, Ph.D., assistant professor of chemistry at the Mellon College of Science and principal investigator on this research.



The research was presented March 28, 2004, at the 227th annual meeting of the American Chemical Society in Anaheim, Calif. The research findings have been accepted for publication in Angewandte Chemie, International Edition. The work was funded by the National Science Foundation.

The new approach is based on a method the Carnegie Mellon group previously developed to form nanostructured carbons by using block copolymers in which PAN is linked to other polymers with which it normally does not mix. In the current method, PAN, a water-hating compound, is copolymerized with polyacrylic acid, a water-loving polymer. In water-containing solutions, PAN-polyacrylic acid copolymers self assemble into nanoscale droplets, or micelles. Each micelle has a water-insoluble PAN core and a water-soluble polyacrylic acid outer coat that forms an outer shell.

The linchpin to make carbon nanoparticles from micelles is a shell-crosslinking technique that Wooley developed with Ph.D. student K. Bruce Thurmond II — now a research scientist at Access Pharmaceuticals, Dallas, Tex. — in the late 1990s at Washington University. Whereas polymer micelles are dynamic assemblies that can be reorganized or destroyed, the shell crosslinking technique allowed the Carnegie Mellon researchers to contain the PAN within the polyacrylic acid to maintain discrete nano-objects during manipulation of the materials. The scientists then deposited thin and ultra-thin films of these nanoparticles on various substrates. The Carnegie Mellon team heated the nanoparticles to high temperatures in a process called pyrolysis, decomposing the polyacrylic acid shell scaffolding and converting the chemically stabilized PAN domains into arrays of discrete carbon nanostructures.

"The preparation, manipulation and study of these highly interesting, discrete carbon nanoparticles were facilitated by an interdisciplinary collaboration that has involved the open sharing of knowledge, ideas, resources and researchers between several laboratories located at Washington University and Carnegie Mellon University," said Wooley. "This kind of cross-institutional teamwork provides for enhanced student experiences and allows for research accomplishments that would not ordinarily be possible, activities which have been supported in large part by the National Science Foundation."

"This work really illustrates a particularly attractive strategy in the evolution of nanotechnology," said Kowalewski, principal investigator on this research and a postdoctoral researcher at Washington University in the late 1990s, and long-time collaborator with Wooley. "Our well-defined carbon nanoparticles should find a wide range of applications, especially in energy storage/conversion devices and in display technologies."

The Carnegie Mellon group is currently working on using carbon nanoparticles as active materials in field emitter arrays for flat panel screen displays. This technology to produce carbon nanostructures also could be adapted to produce solar panels that convert sunlight into electrical energy. Other applications include the development of carbon-based nanosensors or high-surface area electrodes for use in biotechnology or medicine.

Tony Fitzpatrick | WUSTL
Further information:
http://news-info.wustl.edu/news/page/normal/848.html

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>