Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-scale trees created at Lund Institute of Technology

06.05.2004


For the last few years scientists at the Nanometer Consortium at Lund University have been able to make nanowires, tiny wires just a few millionths of a millimeter “thick” and made of semiconducting material of great potential in the electronics industry. Now they have managed to produce “nanotrees,” in fact tiny forests on the same scale.



This is described in an article (“Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events”) in the journal Nature Materials, whose Web edition was published on 02 May. The paper edition should be published in June.

“This opens the possibility of producing ever more complex structures on the nano scale, structures that may offer tremendous potential for applications like solar cells, low-energy lighting, sensors, etc. It is also an example of interdisciplinary collaboration between physics and chemistry, that is, between my research team at Fysicum and the one at Kemicentrum headed by Professor Reine Wallenberg,” says Professor Lars Samuelson, solid state physicist at Lund Institute of Technology.


He was the one who came up with the idea of nanotrees. The person who actually produced them is one of his doctoral students, Kimberly A. Dick, who came to Lund from Waterloo University, Canada.

The scientists produce nanowires by first creating tiny nanoparticles of gold and placing them on a semiconducting tray. Then they release reactive molecules that contain the atoms that they want the nanowires to consist of­-for instance, to make nanowires of silicon (Si) or of alloyed semiconductors such as indium arsenide (InAs) or gallium phosphide (GaP). The reactive molecules seek out the catalytic gold particles and build crystals on the tiny contact surface directly under the gold. Time determines how long the wires will be. The wires are “baked” at 450-500 degrees centigrade. Typically they will be on the scale of a few micrometers (1,000ths of mm) in length and about 50 nanometers thick (about 100 times thinner than the length).

In a second step new gold particles are then sprayed on the nanowires, and the procedure is repeated. Now new “branches” are grown at sites where the gold particles landed. The number of branches grown is determined by the crystal structure of the trunk. There can be three branches at 60-degree angles, four branches at 90-degree angles, and six branches at 30-degree angles. In this way veritable forests of nanotrees can be created.

In a few experiments the researchers have also tried to repeat the procedure a third time, yielding tiny “twigs” or “leaves” on the branches of the trees.

It remains to be seen what applications this new technology can lead to, but the physicists are talking about the possibility of varying the materials that make up the branches, which is also reported in the article in Nature Materials. By doing so, it would be possible to tailor properties of the trees to convert sunlight to electricity. Conversely, the trees could be used to create efficient light panels for lighting rooms­the analogy with Christmas trees is rather striking. Both of these applications would require extremely inexpensive production methods for nanowires and nanotrees, but the researchers are confident that this will be achievable. However, a great deal of basic research needs to be carried out before that.

“Maybe we can get nanoleaves to replicate plant photosynthesis and extract energy from sunlight,” says one of the co-authors, Professor Knut Deppart.

The scientists have already created a spin-off company that will attempt to develop the commercial potential of nanowires, QuMat Technologies AB.

“When MIT Technical Review recently presented “Ten Emerging Technologies That Will Change Your World,” nanowires were one of the ten, with references to Harvard, Berkeley, and Lund, and for industrialization to Nanosys in Palo Alto and to QuMat in Lund,” says Professor Lars Samuelson, head of the Nanometer Consortium at Lund University.

The scientists at the Nanometer Consortium at Lund University are working together with BTG, a leading patent and technology commercialization company, to develop and commercialize pioneering nanowire technology, a platform that is protected by a strong portfolio of patents.

Mats Nygren | alfa
Further information:
http://www.nature.com/naturematerials

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>