Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light-sensitive gloves reduce risk of germ transfer

04.03.2004


High technology is now at our fingertips – literally. A new type of disposable glove emits chlorine dioxide when exposed to light or moisture, killing potentially harmful microbes and making it ideal for use among health care and food workers, according to a study in the March 15 issue of Clinical Infectious Diseases, now available online.



The vinyl or polyethylene gloves contain microspheres that release chlorine dioxide, a water-soluble gas used to disinfect drinking water and processed foods. Chlorine dioxide can destroy a variety of microorganisms, including E. coli, staphylococcus and salmonella, reducing the risk of the glove-wearer transmitting bacteria encountered in medical or food-handling work.

Infusing materials with chlorine dioxide to reduce the numbers of dangerous microorganisms is a concept that could be extremely helpful to a number of industries, according to Dr. Michael Barza, author of the study. "To me, the most interesting thing about this technology is that it is really a ’platform’ technology that could be applied to control of infection in many other circumstances besides gloves and hands," he said. "For example, it could be used in the food industry, including supermarkets, delis and fast food markets." Other medical devices, such as vascular and urinary catheters, if made with the gas-emitting microspheres, could prevent infections that might endanger already vulnerable patients, he added.


Another benefit of the chlorine dioxide-impregnated gloves (which should not cost significantly more than regular gloves) is that they won’t lead to the advent of "super-germs" as antibacterial soaps and cleaners can. "A nice characteristic of chlorine dioxide is that it does not breed resistance among microorganisms and has an incredibly broad spectrum of activity against viruses, bacteria and fungi," said Dr. Barza.


Founded in 1979, Clinical Infectious Diseases publishes clinical articles twice monthly in a variety of areas of infectious disease, and is one of the most highly regarded journals in this specialty. It is published under the auspices of the Infectious Diseases Society of America (IDSA). Based in Alexandria, Virginia, IDSA is a professional society representing more than 7,500 physicians and scientists who specialize in infectious diseases. For more information, visit http://www.idsociety.org.

Diana Olson | EurekAlert!
Further information:
http://www.idsociety.org

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>