Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Light-sensitive gloves reduce risk of germ transfer


High technology is now at our fingertips – literally. A new type of disposable glove emits chlorine dioxide when exposed to light or moisture, killing potentially harmful microbes and making it ideal for use among health care and food workers, according to a study in the March 15 issue of Clinical Infectious Diseases, now available online.

The vinyl or polyethylene gloves contain microspheres that release chlorine dioxide, a water-soluble gas used to disinfect drinking water and processed foods. Chlorine dioxide can destroy a variety of microorganisms, including E. coli, staphylococcus and salmonella, reducing the risk of the glove-wearer transmitting bacteria encountered in medical or food-handling work.

Infusing materials with chlorine dioxide to reduce the numbers of dangerous microorganisms is a concept that could be extremely helpful to a number of industries, according to Dr. Michael Barza, author of the study. "To me, the most interesting thing about this technology is that it is really a ’platform’ technology that could be applied to control of infection in many other circumstances besides gloves and hands," he said. "For example, it could be used in the food industry, including supermarkets, delis and fast food markets." Other medical devices, such as vascular and urinary catheters, if made with the gas-emitting microspheres, could prevent infections that might endanger already vulnerable patients, he added.

Another benefit of the chlorine dioxide-impregnated gloves (which should not cost significantly more than regular gloves) is that they won’t lead to the advent of "super-germs" as antibacterial soaps and cleaners can. "A nice characteristic of chlorine dioxide is that it does not breed resistance among microorganisms and has an incredibly broad spectrum of activity against viruses, bacteria and fungi," said Dr. Barza.

Founded in 1979, Clinical Infectious Diseases publishes clinical articles twice monthly in a variety of areas of infectious disease, and is one of the most highly regarded journals in this specialty. It is published under the auspices of the Infectious Diseases Society of America (IDSA). Based in Alexandria, Virginia, IDSA is a professional society representing more than 7,500 physicians and scientists who specialize in infectious diseases. For more information, visit

Diana Olson | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>