Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tooth, heal thyself

11.06.2003


Dentists beware: Teeth soon may be smart enough to fix themselves.

"Smart materials" invented at the National Institute of Standards and Technology (NIST) soon may be available that stimulate repair of defective teeth. Laboratory studies show that these composites, made of amorphous (loosely structured) calcium phosphate embedded in polymers, can promote re-growth of natural tooth structures efficiently. In the presence of saliva-like solutions, the material releases calcium and phosphate ions, forming a crystalline calcium phosphate similar to the mineral found naturally in teeth and bone. Developed through a long-standing partnership between NIST and the American Dental Association (ADA), these bioactive, biocompatible materials are described in a forthcoming paper in the NIST Journal of Research.

Plans are being made for clinical trials, and several companies have expressed interest in licensing the patented material once a production-ready form is available. Initial applications include adhesive cements that minimize the decay that often occurs under orthodontic braces. The material also can be used as an anti-cavity liner underneath conventional fillings and possibly in root canal therapy.



NIST and ADA scientists continue to enhance the material’s physicochemical and mechanical properties and remineralizing behavior, thereby extending its dental and even orthopedic applications. For example, the researchers found that adding silica and zirconia to the material during processing stabilizes the amorphous calcium phosphate against premature internal formation of crystals, thereby achieving sustained release of calcium and phosphate over a longer period of time.


The work is funded through a grant from the National Institute of Dental and Craniofacial Research.


Laura Ost | EurekAlert!
Further information:
http://www.nist.gov/

More articles from Materials Sciences:

nachricht Nagoya University researchers break down plastic waste
29.05.2017 | Nagoya University

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>