Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of T research holds promise for optical chip

29.04.2003


University of Toronto researchers have developed a hybrid plastic that can produce light at wavelengths used for fibre-optic communication, paving the way for an optical computer chip.



The material, developed by a joint team of engineers and chemists, is a plastic embedded with quantum dots - crystals just five billionths of a metre in size - that convert electrons into photons. The findings hold promise for directly linking high-speed computers with networks that transmit information using light - the largest capacity carrier of information available.

"While others have worked in quantum dots before," says investigator Ted Sargent, a professor in the Edward S. Rogers Sr. Department of Electrical and Computer Engineering, "we have shown how quantum dots can be tuned and incorporated into the right materials to address the whole set of communication wavelengths.


"Our study is the first to demonstrate experimentally that we can convert electrical current into light using a particularly promising class of nanocrystals," says Sargent, who holds the Nortel Networks-Canada Research Chair in Emerging Technologies. The study appears in the April 28 issue of the journal Applied Physics Letters.

"Our research is based on nanotechnology: engineering based on the length of a nanometer - one billionth of a metre," he says. "We are building custom materials from the ground up." Working with colleagues in Professor Gregory Scholes’ group from U of T’s Department of Chemistry, the team created nanocrystals of lead sulphide using a cost-effective technique that allowed them to work at room pressure and at temperatures of less than 150 degrees Celsius. Traditionally, creating the crystals used in generating light for fibre-optic communications means working in a vacuum at temperatures approaching 600 to 800 degrees Celsius.

Despite the precise way in which quantum dot nanocrystals are created, the surfaces of the crystals are unstable, Scholes explains. To stabilize them, the team placed a special layer of molecules around the nanocrystals. These crystals were combined with a semiconducting polymer material to create a thin, smooth film of the hybrid polymer.

Sargent explains that when electrons cross the conductive polymer, they encounter what are essentially "canyons," with a quantum dot located at the bottom. Electrons must fall over the edge of the "canyon" and reach the bottom before producing light. The team tailored the stabilizing molecules so they would hold special electrical properties, ensuring a flow of electrons into the light-producing "canyons."

The colours of light the researchers generated, ranging from 1.3 microns to 1.6 microns in wavelength, spanned the full range of colours used to communicate information using light.

"Our work represents a step towards the integration of many fibre-optic communications devices on one chip," says Sargent. "We’ve shown that our hybrid plastic can convert electric current into light, with promising efficiency and with a defined path towards further improvement. With this light source combined with fast electronic transistors, light modulators, light guides and detectors, the optical chip is in view."

The research team included Ludmila Bakueva, Sergei Musikhin, Margaret Hines, Tung-Wah Frederick Chang and Marian Tzolov from the departments of chemistry and electrical and computer engineering. The research was supported by Nortel Networks, the Natural Sciences and Engineering Research Council of Canada, Materials and Manufacturing Ontario, the Canada Foundation for Innovation, the Ontario Innovation Trust and the Canada Research Chairs Program.


CONTACT:

Ted Sargent
Edward S. Rogers Department of Electrical and Computer Engineering
416-946-5051
ted.sargent@utoronto.ca

Nicolle Wahl
U of T Public Affairs
416-978-6974
nicolle.wahl@utoronto.ca

Nicolle Wahl | EurekAlert!
Further information:
http://www.utoronto.ca/

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>