Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Bioplastic Reinforced With Natural Fibres

17.04.2003


Finland Leads Europe In The Development Of Biodegradable Plastics



VTT, Technical Research Centre of Finland, has made degradable bioplastic more durable due to reinforcement with natural fibres. This biocomposite, which is totally biodegradable, supports sustainable development. The waste costs for products made from this will be small, and in the future consumers will have an enhanced appreciation of biodegradability of materials.

VTT achieved this biocomposite using flax fibres to reinforce bioplastic. VTT also developed a method by which the properties of the completely biodegradable biocomposite can be tailored according to the projected use of the product. It is a further advantage that the new bioplastic products can be manufactured on the same machinery on which conventional plastic products which are only partially biodegradable are manufactured.


The spearhead in the development of such flax reinforced completely biodegradable products has been in Finland, Sweden and the USA. VTT research succeeded in creating the desired mechanical strengths for bioplastic through an appropriate combination of bioplastic raw material and flax. The research also explored the resistance of the new biocomposite to heat, moisture and UV radiation, and further developed the manufacturing process.

Fibreglass has traditionally been used to reinforce plastics. This is difficult to recycle and there may be health hazards involved in handling it. In central Europe the car manufacturing industry especially uses flax fibres for reinforcement, but mixed with non-biodegradable plastic raw material.

“Our company acquired knowledge suggesting that it would be good to continue working on product development and research in order to bring new, biodegradable materials onto the markets. One year ago an EU norm was set for bioplastic, and in the next few years compostible packages are to come onto the markets of southern Europe. Finland is the leader in Europe for completely biodegradable bioplastic. Much of the credit is due to TEKES and its biopolymer programme,” says Anders Södergård, technology manager of the Dutch company Hycail and part-time professor of applied biomaterial sciences at the University of Turku.

The research work on biocomposites led by VTT was financed by TEKES, several companies and VTT. The companies specified the desired properties for bioplastic and the research work was accomplished chiefly by VTT, Tampere University of Technology, Åbo Akademi University and Hycail. Hycail has a pilot factory for lactic acid based bioplastic raw material producing 400 tons of raw material a year.

Paula Haapanen | alfa

More articles from Materials Sciences:

nachricht ADIR Project: Lasers Recover Valuable Materials
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht High-tech sensing illuminates concrete stress testing
20.07.2017 | University of Leeds

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>