How Crystal Becomes a Conductor

The results represent an advance in computer modeling of these materials and could shed light on the behavior of similar minerals deep in the Earth, said Warren Pickett, professor of physics at UC Davis and an author on the study.

Manganese oxide is magnetic but does not conduct electricity under normal conditions because of strong interactions between the electrons surrounding atoms in the crystal, Pickett said. But under pressures of about a million atmospheres (one megabar), manganese oxide transitions to a metallic state.

Pickett and colleagues Richard Scalettar at UC Davis, Jan Kunes at the University of Augsburg, Germany, Alexey Lukoyanov at the Ural State Technical University, Russia, and Vladimir Anisimov at the Institute of Metal Physics in Yekaterinburg, Russia, built and ran computational models of manganese oxide.

Using the model, the researchers were able to test different explanations for the transition and identify the microscopic mechanism responsible. They found that when the atoms are forced together under high pressure, the magnetic properties of the manganese atoms become unstable and collapse, freeing the electrons to move through the crystal.

Manganese oxide has similar properties to iron oxide and silicates (silicon oxides), which make up a major part of the Earth's crust and mantle. Understanding how these materials behave under enormous pressures deep underground could help geologists understand the Earth's interior, Pickett said.

The paper was published Feb. 3 in the online edition of the journal Nature Materials.

Media Contact

Andy Fell EurekAlert!

More Information:

http://www.ucdavis.edu

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors