Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum computer calculates exact energy of molecular hydrogen

11.01.2010
Groundbreaking approach could impact fields from cryptography to materials science

In an important first for a promising new technology, scientists have used a quantum computer to calculate the precise energy of molecular hydrogen. This groundbreaking approach to molecular simulations could have profound implications not just for quantum chemistry, but also for a range of fields from cryptography to materials science.

"One of the most important problems for many theoretical chemists is how to execute exact simulations of chemical systems," says author Alán Aspuru-Guzik, assistant professor of chemistry and chemical biology at Harvard University. "This is the first time that a quantum computer has been built to provide these precise calculations."

The work, described this week in Nature Chemistry, comes from a partnership between Aspuru-Guzik's team of theoretical chemists at Harvard and a group of experimental physicists led by Andrew White at the University of Queensland in Brisbane, Australia. Aspuru-Guzik's team coordinated experimental design and performed key calculations, while his partners in Australia assembled the physical "computer" and ran the experiments.

"We were the software guys," says Aspuru-Guzik, "and they were the hardware guys."

While modern supercomputers can perform approximate simulations of simple molecular systems, increasing the size of the system results in an exponential increase in computation time. Quantum computing has been heralded for its potential to solve certain types of problems that are impossible for conventional computers to crack.

Rather than using binary bits labeled as "zero" and "one" to encode data, as in a conventional computer, quantum computing stores information in qubits, which can represent both "zero" and "one" simultaneously. When a quantum computer is put to work on a problem, it considers all possible answers by simultaneously arranging its qubits into every combination of "zeroes" and "ones."

Since one sequence of qubits can represent many different numbers, a quantum computer would make far fewer computations than a conventional one in solving some problems. After the computer's work is done, a measurement of its qubits provides the answer.

"Because classical computers don't scale efficiently, if you simulate anything larger than four or five atoms -- for example, a chemical reaction, or even a moderately complex molecule -- it becomes an intractable problem very quickly," says author James Whitfield, research assistant in chemistry and chemical biology at Harvard. "Approximate computations of such systems are usually the best chemists can do."

Aspuru-Guzik and his colleagues confronted this problem with a conceptually elegant idea.

"If it is computationally too complex to simulate a quantum system using a classical computer," he says, "why not simulate quantum systems with another quantum system?"

Such an approach could, in theory, result in highly precise calculations while using a fraction the resources of conventional computing.

While a number of other physical systems could serve as a computer framework, Aspuru-Guzik's colleagues in Australia used the information encoded in two entangled photons to conduct their hydrogen molecule simulations. Each calculated energy level was the result of 20 such quantum measurements, resulting in a highly precise measurement of each geometric state of molecular hydrogen.

"This approach to computation represents an entirely new way of providing exact solutions to a range of problems for which the conventional wisdom is that approximation is the only possibility," says Aspuru-Guzik.

Ultimately, the same quantum computer that could transform Internet cryptography could also calculate the lowest energy conformations of molecules as complex as cholesterol.

Aspuru-Guzik and Whitfield's Harvard co-authors on the Nature Chemistry paper are Ivan Kassal, Jacob D. Biamonte, and Masoud Mohseni. Financial support was provided by the US Army Research Office and the Australian Research Council Federation Fellow and Centre of Excellence programs. Aspuru-Guzik recently received support from the DARPA Young Investigator Program, the Alfred P. Sloan Foundation, and the Camille and Henry Dreyfus Foundation to pursue research towards practical quantum simulators.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Materials Sciences:

nachricht High-tech sensing illuminates concrete stress testing
20.07.2017 | University of Leeds

nachricht Here's a tip: Indented cement shows unique properties
20.07.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>