Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential carbon capture role for new CO2 absorbing material

13.06.2012
A novel porous material that has unique carbon dioxide retention properties has been developed through research led by The University of Nottingham.

The findings, published in the prestigious peer-reviewed journal Nature Materials, form part of ongoing efforts to develop new materials for gas storage applications and could have an impact in the advancement of new carbon capture products for reducing emissions from fossil fuel processes.

It focuses on the metal organic framework NOTT-202a, which has a unique honeycomb-like structural arrangement and can be considered to represent an entirely new class of porous material.

Most importantly, the material structure allows selective adsorption of carbon dioxide — while other gases such as nitrogen, methane and hydrogen can pass back through, the carbon dioxide remains trapped in the materials nanopores, even at low temperatures.

Unique material

Lead researcher Professor Martin Schröder, in the University’s School of Chemistry, said: “The unique defect structure that this new material shows can be correlated directly to its gas adsorption properties. Detailed analyses via structure determination and computational modelling have been critical in determining and rationalising the structure and function of this material.”

The research team — which is included Dr Sihai Yang, Professor Alexander Blake, Professor Neil Champness and Dr Elena Bichoutskaia at Nottingham — collaborated on the project with colleagues at the University of Newcastle and Diamond Light Source and STFC Daresbury Laboratory.

NOTT-202a consists of a tetra-carboxylate ligands — a honeycomb like structure made of a series of molecules or ions bound to a central metal atom — and filled with indium metal centres. This forms a novel structure consisting of two interlocked frameworks.

Innovative solutions

State-of-the-art X-ray powder diffraction measurements at Diamond Light Source and advanced computer modelling were used to probe and gain insight into the unique carbon dioxide capturing properties of the material.

The study has been funded by the ERC Advanced Grant COORDSPACE and by an EPSRC Programme Grant ChemEnSus aimed at applying coordination chemistry to the generation of new multi-functional porous materials that could provide innovative solutions for key issues around environmental and chemical sustainability.

These projects incorporate multi-disciplinary collaborations across chemistry, physics and materials science, and aim to develop new materials that could have application in gas storage, sieving and purification, carbon capture, chemical reactivity and sensing.

Emma Thorne | EurekAlert!
Further information:
http://www.nottingham.ac.uk

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>