Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential carbon capture role for new CO2 absorbing material

13.06.2012
A novel porous material that has unique carbon dioxide retention properties has been developed through research led by The University of Nottingham.

The findings, published in the prestigious peer-reviewed journal Nature Materials, form part of ongoing efforts to develop new materials for gas storage applications and could have an impact in the advancement of new carbon capture products for reducing emissions from fossil fuel processes.

It focuses on the metal organic framework NOTT-202a, which has a unique honeycomb-like structural arrangement and can be considered to represent an entirely new class of porous material.

Most importantly, the material structure allows selective adsorption of carbon dioxide — while other gases such as nitrogen, methane and hydrogen can pass back through, the carbon dioxide remains trapped in the materials nanopores, even at low temperatures.

Unique material

Lead researcher Professor Martin Schröder, in the University’s School of Chemistry, said: “The unique defect structure that this new material shows can be correlated directly to its gas adsorption properties. Detailed analyses via structure determination and computational modelling have been critical in determining and rationalising the structure and function of this material.”

The research team — which is included Dr Sihai Yang, Professor Alexander Blake, Professor Neil Champness and Dr Elena Bichoutskaia at Nottingham — collaborated on the project with colleagues at the University of Newcastle and Diamond Light Source and STFC Daresbury Laboratory.

NOTT-202a consists of a tetra-carboxylate ligands — a honeycomb like structure made of a series of molecules or ions bound to a central metal atom — and filled with indium metal centres. This forms a novel structure consisting of two interlocked frameworks.

Innovative solutions

State-of-the-art X-ray powder diffraction measurements at Diamond Light Source and advanced computer modelling were used to probe and gain insight into the unique carbon dioxide capturing properties of the material.

The study has been funded by the ERC Advanced Grant COORDSPACE and by an EPSRC Programme Grant ChemEnSus aimed at applying coordination chemistry to the generation of new multi-functional porous materials that could provide innovative solutions for key issues around environmental and chemical sustainability.

These projects incorporate multi-disciplinary collaborations across chemistry, physics and materials science, and aim to develop new materials that could have application in gas storage, sieving and purification, carbon capture, chemical reactivity and sensing.

Emma Thorne | EurekAlert!
Further information:
http://www.nottingham.ac.uk

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>