Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PolyU scientist develop new textile materials for sportswear

17.10.2011
A novel type of fabric that can absorb water and perspiration on one side and transport it to the other has been invented by a team of textile scientists based at The Hong Kong Polytechnic University (PolyU).

A novel type of fabric that can absorb water and perspiration on one side and transport it to the other has been invented by a team of textile scientists based at The Hong Kong Polytechnic University (PolyU). The finding was published in the latest issue of the Journal of Materials Chemistry (Issue dated 13 October 2011) of the Royal Society of Chemistry.

This ground-breaking research was done by Professor John Xin, Acting Head of PolyU’s Institute of Textile and Clothing; his PhD student Miss Kong Yee-yee; and Dr Liu Yuyang of the Stevens Institute of Technology in the US. The researchers have made the fabric hydrophilic on one side by coating it with nano titania, which gives the material photo-induced hydrophilicity. This means that its hydrophilicity can be controlled by light. The fabric becomes hydrophobic after being stored in the dark.

The fabric could be used to wick sweat away from the human skin. In the light, water can be transported in a controllable manner from the hydrophobic side (next to the skin) to the hydrophilic side and then spread out rapidly along the channels on the hydrophilic side.

This differs from other materials that do a similar thing. Current materials work by creating a surface energy gradient across the fabric by a pressure difference. Professor John Xin’s work introduces nano and smart elements into the system, taking advantage of titania’s properties.

A pioneering researcher, Professor John Xin and is renowned for his nano-technology breakthrough for to develop a special fabric which can be made into self-cleaning clothes. This breakthrough by Professor Xin and Dr Walid Daoud in 2004 was also reported by Nature.

Regina Yu | Research asia research news
Further information:
http://www.polyu.edu.hk
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>