Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ORNL-UT researchers invent ‘sideways’ approach to 2-D hybrid materials

Researchers at the Department of Energy’s Oak Ridge National Laboratory and the University of Tennessee, Knoxville have pioneered a new technique for forming a two-dimensional, single-atom sheet of two different materials with a seamless boundary.

The study, published in the journal Science, could enable the use of new types of 2-D hybrid materials in technological applications and fundamental research.

ORNL and UT researchers have invented a method to merge different 2-dimensional materials into a seamless layer. This colorized scanning tunneling microscope image shows a single-atom sheet composed of graphene (seen in blue) combined with hexagonal boron nitride (seen in yellow).

By rethinking a traditional method of growing materials, the researchers combined two compounds -- graphene and boron nitride -- into a single layer only one atom thick. Graphene, which consists of carbon atoms arranged in hexagonal, honeycomb-like rings, has attracted waves of attention because of its high strength and electronic properties.

“People call graphene a wonder material that could revolutionize the landscape of nanotechnology and electronics,” ORNL’s An-Ping Li said. “Indeed, graphene has a lot of potential, but it has limits. To make use of graphene in applications or devices, we need to integrate graphene with other materials.”

One method to combine differing materials into heterostructures is epitaxy, in which one material is grown on top of another such that both have the same crystalline structure. To grow the 2-D materials, the ORNL-UT research team directed the growth process horizontally instead of vertically.

The researchers first grew graphene on a copper foil, etched the graphene to create clean edges, and then grew boron nitride through chemical vapor deposition. Instead of conforming to the structure of the copper base layer as in conventional epitaxy, the boron nitride atoms took on the crystallography of the graphene.

“The graphene piece acted as a seed for the epitaxial growth in two-dimensional space, so that the crystallography of the boron nitride is solely determined by the graphene,” UT’s Gong Gu said.

Not only did the team’s technique combine the two materials, it also produced an atomically sharp boundary, a one-dimensional interface, between the two materials. The ability to carefully control this interface, or “heterojunction,” is important from an applied and fundamental perspective, says Gu.

“If we want to harness graphene in an application, we have to make use of the interface properties, since as Nobel laureate Herbert Kroemer once said ‘the interface is the device,’” Li said. “By creating this clean, coherent, 1-D interface, our technique provides us with the opportunity to fabricate graphene-based devices for real applications.”

The new technique also allows researchers to experimentally investigate the scientifically intriguing graphene-boron nitride boundary for the first time.

“There is a vast body of theoretical literature predicting wonderful physical properties of this peculiar boundary, in absence of any experimental validation so far,” said Li, who leads an ORNL effort to study atomic-level structure-transport relationships using the lab’s unique four-probe scanning tunneling microscopy facility. “Now we have a platform to explore these properties.”

The research team anticipates that its method can be applied to other combinations of 2-D materials, assuming that the different crystalline structures are similar enough to match one another.

The study, titled “Heteroepitaxial Growth of Two-Dimensional Hexagonal Boron Nitride Templated by Graphene Edges,” is available online.

Coauthors are the University of Tennessee’s Gong Gu, Lei Liu, and Wan Deng; ORNL’s Jewook Park, Kendal Clark, Juan Carlos Idrobo, Leonardo Basile and An-Ping Li; and Sandia National Laboratories’ David Siegel and Kevin McCarty.

This work was partially supported by the National Science Foundation, the Defense Advanced Research Projects Agency, and the National Secretariat of Higher Education, Science, Technology and Innovation of Ecuador. Work at Sandia was supported by DOE’s Office of Science.

Part of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at ORNL by the Scientific User Facilities Division in DOE’s Office of Basic Energy Sciences. CNMS is one of the five DOE Nanoscale Science Research Centers supported by the DOE Office of Science, premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories. For more information about the DOE NSRCs, please visit

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

Morgan McCorkle | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>