Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL microscopy directly images problematic lithium dendrites in batteries

10.03.2015

Scientists at the Department of Energy's Oak Ridge National Laboratory have captured the first real-time nanoscale images of lithium dendrite structures known to degrade lithium-ion batteries. The ORNL team's electron microscopy could help researchers address long-standing issues related to battery performance and safety.

Dendrites form when metallic lithium takes root on a battery's anode and begins growing haphazardly. If the dendrites grow too large, they can puncture the divider between the electrodes and short-circuit the cell, resulting in catastrophic battery failure.


ORNL electron microscopy captured the first real-time nanoscale images of the nucleation and growth of lithium dendrite structures known to degrade lithium-ion batteries.

Credit: ORNL

The researchers studied dendrite formation by using a miniature electrochemical cell that mimics the liquid conditions inside a lithium-ion battery. Placing the liquid cell in a scanning transmission electron microscope and applying voltage to the cell allowed the researchers to watch as lithium deposits--which start as a nanometer-size seed--grew into dendritic structures.

"It gives us a nanoscopic view of how dendrites nucleate and grow," said ORNL's Raymond Unocic, in situ microscopy team leader. "We can visualize the whole process on a glassy carbon microelectrode and observe where the dendrites prefer to nucleate and also track morphological changes during growth." Watch a video of the dendrite growth here: https://www.youtube.com/watch?v=rpPUTM_u_PM.

In addition to imaging the structures at high-resolution, the team's microscopy technique gathered precise measurements of the cell's electrochemical performance. "This technique allows us to follow subtle nano-sized structural and chemical changes that occur and more importantly, correlate that to the measured performance of a battery," said Robert Sacci, ORNL postdoctoral researcher and lead author of the Nano Letters study.

This real-time analysis in a liquid environment sets the ORNL team's approach apart from other characterization methods.

"Usually when you run a battery over many charge-discharge cycles, you typically wait until things start failing and at that point you perform a root-cause failure analysis," Unocic said. "Then you see there's a dendrite--but so what? Now that we can see exactly how the dendrites are forming using our technique, we can be proactive and devise strategies for inhibiting or reducing these phenomena."

The ORNL team believes scientists who are experimenting with different ways to tackle the dendrite problem, such as liquid additives or stronger separators, will benefit from its research.

"If you don't understand the basic mechanism of why things happen in your devices, you'll always be thinking, 'Why did this happen and how do I fix it?'" Unocic said. "Until you get down to the microscopic and nanoscopic level to look at the structural and chemical evolution that's happening in the cells--then you can't truly address those issues that come up."

###

The study is published as "Nanoscale Imaging of Fundamental Li Battery Chemistry: Solid-Electrolyte Interphase Formation and Preferential Growth of Lithium Metal Nanoclusters." Coauthors are Robert Sacci, Jennifer Black, Nina Balke, Nancy Dudney, Karren More and Raymond Unocic.

This research was supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by DOE's Office of Science. The study also used resources at Center for Nanophase Materials Sciences, a DOE Office of Science User Facility at ORNL.

UT-Battelle manages ORNL for the Department of Energy's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

Image: http://www.ornl.gov/Image%20Library/Main%20Nav/ORNL/News/News%20Releases/2015/dendriteimage_hr.jpg?code=b7a30c9e-c787-4dc1-84b5-c6bb046ada11

Caption: ORNL electron microscopy captured the first real-time nanoscale images of the nucleation and growth of lithium dendrite structures known to degrade lithium-ion batteries.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:

Twitter - http://twitter.com/ornl
RSS Feeds - http://www.ornl.gov/ornlhome/rss_feeds.shtml
Flickr - http://www.flickr.com/photos/oakridgelab
YouTube - http://www.youtube.com/user/OakRidgeNationalLab
LinkedIn - http://www.linkedin.com/companies/oak-ridge-national-laboratory
Facebook - http://www.facebook.com/Oak.Ridge.National.Laboratory

Media Contact

Morgan McCorkle
mccorkleml@ornl.gov
865-574-7308

 @ORNL

http://www.ornl.gov 

Morgan McCorkle | EurekAlert!

More articles from Materials Sciences:

nachricht Physicists gain new insights into nanosystems with spherical confinement
27.07.2017 | Johannes Gutenberg Universitaet Mainz

nachricht Getting closer to porous, light-responsive materials
26.07.2017 | Kyoto University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>