Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL microscopy directly images problematic lithium dendrites in batteries

10.03.2015

Scientists at the Department of Energy's Oak Ridge National Laboratory have captured the first real-time nanoscale images of lithium dendrite structures known to degrade lithium-ion batteries. The ORNL team's electron microscopy could help researchers address long-standing issues related to battery performance and safety.

Dendrites form when metallic lithium takes root on a battery's anode and begins growing haphazardly. If the dendrites grow too large, they can puncture the divider between the electrodes and short-circuit the cell, resulting in catastrophic battery failure.


ORNL electron microscopy captured the first real-time nanoscale images of the nucleation and growth of lithium dendrite structures known to degrade lithium-ion batteries.

Credit: ORNL

The researchers studied dendrite formation by using a miniature electrochemical cell that mimics the liquid conditions inside a lithium-ion battery. Placing the liquid cell in a scanning transmission electron microscope and applying voltage to the cell allowed the researchers to watch as lithium deposits--which start as a nanometer-size seed--grew into dendritic structures.

"It gives us a nanoscopic view of how dendrites nucleate and grow," said ORNL's Raymond Unocic, in situ microscopy team leader. "We can visualize the whole process on a glassy carbon microelectrode and observe where the dendrites prefer to nucleate and also track morphological changes during growth." Watch a video of the dendrite growth here: https://www.youtube.com/watch?v=rpPUTM_u_PM.

In addition to imaging the structures at high-resolution, the team's microscopy technique gathered precise measurements of the cell's electrochemical performance. "This technique allows us to follow subtle nano-sized structural and chemical changes that occur and more importantly, correlate that to the measured performance of a battery," said Robert Sacci, ORNL postdoctoral researcher and lead author of the Nano Letters study.

This real-time analysis in a liquid environment sets the ORNL team's approach apart from other characterization methods.

"Usually when you run a battery over many charge-discharge cycles, you typically wait until things start failing and at that point you perform a root-cause failure analysis," Unocic said. "Then you see there's a dendrite--but so what? Now that we can see exactly how the dendrites are forming using our technique, we can be proactive and devise strategies for inhibiting or reducing these phenomena."

The ORNL team believes scientists who are experimenting with different ways to tackle the dendrite problem, such as liquid additives or stronger separators, will benefit from its research.

"If you don't understand the basic mechanism of why things happen in your devices, you'll always be thinking, 'Why did this happen and how do I fix it?'" Unocic said. "Until you get down to the microscopic and nanoscopic level to look at the structural and chemical evolution that's happening in the cells--then you can't truly address those issues that come up."

###

The study is published as "Nanoscale Imaging of Fundamental Li Battery Chemistry: Solid-Electrolyte Interphase Formation and Preferential Growth of Lithium Metal Nanoclusters." Coauthors are Robert Sacci, Jennifer Black, Nina Balke, Nancy Dudney, Karren More and Raymond Unocic.

This research was supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by DOE's Office of Science. The study also used resources at Center for Nanophase Materials Sciences, a DOE Office of Science User Facility at ORNL.

UT-Battelle manages ORNL for the Department of Energy's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

Image: http://www.ornl.gov/Image%20Library/Main%20Nav/ORNL/News/News%20Releases/2015/dendriteimage_hr.jpg?code=b7a30c9e-c787-4dc1-84b5-c6bb046ada11

Caption: ORNL electron microscopy captured the first real-time nanoscale images of the nucleation and growth of lithium dendrite structures known to degrade lithium-ion batteries.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:

Twitter - http://twitter.com/ornl
RSS Feeds - http://www.ornl.gov/ornlhome/rss_feeds.shtml
Flickr - http://www.flickr.com/photos/oakridgelab
YouTube - http://www.youtube.com/user/OakRidgeNationalLab
LinkedIn - http://www.linkedin.com/companies/oak-ridge-national-laboratory
Facebook - http://www.facebook.com/Oak.Ridge.National.Laboratory

Media Contact

Morgan McCorkle
mccorkleml@ornl.gov
865-574-7308

 @ORNL

http://www.ornl.gov 

Morgan McCorkle | EurekAlert!

More articles from Materials Sciences:

nachricht Game-changing finding pushes 3D-printing to the molecular limit
20.06.2018 | University of Nottingham

nachricht Creating a new composite fuel for new-generation fast reactors
20.06.2018 | Lobachevsky University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>