Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Organic electronics: A faster way to move electrons

24.06.2013
A low-cost molecule boosts the stability and amplification characteristics of solution-based polymer semiconductors
Replacing traditional rigid silicon wafers with semiconductors made from flexible polymers would herald an age of advanced, ‘wearable’ electronics. Switching to these semiconductors, known as organic field-effect transistors (OFETs), would also reduce manufacturing costs significantly. However, most plastic materials have trouble moving electrons and their polar opposites — positively charged empty ‘holes’ inside semiconductor lattices — with sufficient speed for electronic amplification.

Prashant Sonar and co-workers from the A*STAR Institute of Materials Research and Engineering in Singapore have now developed a polymer for solution-based OFET processing that has inherently high carrier mobility and extraordinary air stability1. Unlike silicon, polymers are difficult to pack into crystalline structures containing regular pathways for charge carriers. The team’s polymer, however, has specifically designed hydrogen bond interactions that create ordered networks for transporting electrons and holes.

Most polymers used in OFETs have a ‘donor–acceptor’ arrangement of conjugated molecules to enhance the mobility of charge carriers. Using special catalysts, chemists can link together small units of electron-rich and electron-poor aromatic molecules to form an alternating chain of ‘block’ co-polymers. Sonar and co-workers investigated whether fluorenone — an inexpensive and chemically stable molecule with three fused aromatic rings and a central carbonyl unit — could act as a new type of acceptor block for OFET polymers.

The researchers anticipated that the unusual polarity of fluorenone's carbonyl unit might help it stick to aromatic hydrogen atoms and improve solid-state packing. To test this concept, they made a co-polymer consisting of fluorenone and an aromatic donor known as diketopyrrolopyrrole (DPP), a compound designed to be compatible with large-scale solution processing. The resulting block co-polymer had exceptional thermal stability: it melted only at external temperatures over 300 °C.

When Sonar and co-workers used a technique called spin-coating to convert the fluorenone–DPP co-polymer into an OFET device, they observed impressive amplification characteristics and one of the highest hole mobilities ever recorded for solution-processed transistors. Their tests also showed that this material retained its valuable electronic attributes without decomposing in air — a problem that plagued earlier generations of OFETs. Optical measurements revealed the basis of this high stability: the fluorenone units make electrons in the co-polymer’s highest energy states less accessible and therefore less susceptible to air-based impurities.

“Fluorenone is a commercially available, cheap starting material, which has never been studied for OFET use before,” says Sonar. The team is now investigating how to utilize it as a novel building block for high-performance organic electronic applications by carefully ‘engineering’ chemical improvements onto its molecular framework.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Journal information

Sonar, P., Ha, T.-J. & Dodabalapur, A. A fluorenone based low band gap solution processable copolymer for air stable and high mobility organic field effect transistors. Chemical Communications 49, 1588–1590 (2013)

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6686
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>