Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Organic electronics: A faster way to move electrons

24.06.2013
A low-cost molecule boosts the stability and amplification characteristics of solution-based polymer semiconductors
Replacing traditional rigid silicon wafers with semiconductors made from flexible polymers would herald an age of advanced, ‘wearable’ electronics. Switching to these semiconductors, known as organic field-effect transistors (OFETs), would also reduce manufacturing costs significantly. However, most plastic materials have trouble moving electrons and their polar opposites — positively charged empty ‘holes’ inside semiconductor lattices — with sufficient speed for electronic amplification.

Prashant Sonar and co-workers from the A*STAR Institute of Materials Research and Engineering in Singapore have now developed a polymer for solution-based OFET processing that has inherently high carrier mobility and extraordinary air stability1. Unlike silicon, polymers are difficult to pack into crystalline structures containing regular pathways for charge carriers. The team’s polymer, however, has specifically designed hydrogen bond interactions that create ordered networks for transporting electrons and holes.

Most polymers used in OFETs have a ‘donor–acceptor’ arrangement of conjugated molecules to enhance the mobility of charge carriers. Using special catalysts, chemists can link together small units of electron-rich and electron-poor aromatic molecules to form an alternating chain of ‘block’ co-polymers. Sonar and co-workers investigated whether fluorenone — an inexpensive and chemically stable molecule with three fused aromatic rings and a central carbonyl unit — could act as a new type of acceptor block for OFET polymers.

The researchers anticipated that the unusual polarity of fluorenone's carbonyl unit might help it stick to aromatic hydrogen atoms and improve solid-state packing. To test this concept, they made a co-polymer consisting of fluorenone and an aromatic donor known as diketopyrrolopyrrole (DPP), a compound designed to be compatible with large-scale solution processing. The resulting block co-polymer had exceptional thermal stability: it melted only at external temperatures over 300 °C.

When Sonar and co-workers used a technique called spin-coating to convert the fluorenone–DPP co-polymer into an OFET device, they observed impressive amplification characteristics and one of the highest hole mobilities ever recorded for solution-processed transistors. Their tests also showed that this material retained its valuable electronic attributes without decomposing in air — a problem that plagued earlier generations of OFETs. Optical measurements revealed the basis of this high stability: the fluorenone units make electrons in the co-polymer’s highest energy states less accessible and therefore less susceptible to air-based impurities.

“Fluorenone is a commercially available, cheap starting material, which has never been studied for OFET use before,” says Sonar. The team is now investigating how to utilize it as a novel building block for high-performance organic electronic applications by carefully ‘engineering’ chemical improvements onto its molecular framework.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Journal information

Sonar, P., Ha, T.-J. & Dodabalapur, A. A fluorenone based low band gap solution processable copolymer for air stable and high mobility organic field effect transistors. Chemical Communications 49, 1588–1590 (2013)

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6686
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>