Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutron analysis explains dynamics behind best thermoelectric materials

07.06.2011
Neutron analysis of the atomic dynamics behind thermal conductivity is helping scientists at the Department of Energy's Oak Ridge National Laboratory gain a deeper understanding of how thermoelectric materials work. The analysis could spur the development of a broader range of products with the capability to transform heat to electricity.

Researchers performed experiments at both of ORNL's neutron facilities -- the Spallation Neutron Source and the High Flux Isotope Reactor -- to learn why the material lead telluride, which has a similar molecular structure to common table salt, has very low thermal conductivity, or heat loss -- a property that makes lead telluride a compelling thermoelectric material.

"The microscopic origin of the low thermal conductivity is not well understood. Once we do understand it better we can design materials that perform better at converting heat to electricity," said Olivier Delaire, a researcher and Clifford Shull Fellow in ORNL's Neutron Sciences Directorate.

Delaire's research, reported in Nature Materials, shows that an unusual coupling of microscopic vibrational modes, called phonons, is responsible for the disruption of the dynamics that transport the thermal energy in lead telluride.

In typical crystalline materials, which have a lattice-like atomic structure, the conduction of heat is enhanced by the propagation of phonons along the lattice. The atoms conduct heat by vibrating in a chain, similar to vibrations propagating along a spring.

Delaire's team determined through analysis at the SNS that lead telluride, although having the same crystal lattice as rock salt, exhibits a strong coupling of phonons, which results in a disruption of the lattice effect and cancels the ability to conduct heat.

"The resolution of the SNS's Cold Neutron Chopper Spectrometer, along with the high flux, have been quite important to making these time of flight measurements," Delaire said.

By controlling thermal conductivity in thermoelectrics, less energy is dispersed and more heat can be directed to power generation. Today, thermoelectric materials are used to power the deep-space probes that explore the outer planets and solar system. Cruising beyond the range of solar collectors, the crafts' reactor thermoelectric generators use heat from decaying radioisotopes to generate power.

New, advanced thermoelectric materials could be used to develop more earthly applications, such as vehicle exhaust systems that convert exhaust heat into electricity, reducing the need for alternators. New thermoelectric materials could also help concentrate solar energy for power generation and recover waste heat for industrial processes.

Delaire's team performed additional neutron measurements with HFIR's triple-axis spectrometer. Data analysis has been facilitated through collaboration with ORNL's Materials Theory group. Samples were synthesized and characterized in ORNL's Correlated Electrons Materials group.

The work was funded by DOE's Office of Science as part of the Solid-State Solar-Thermal Energy Conversion Center (S3TEC) Energy Research Frontier Center.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

Bill Cabage | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Materials Sciences:

nachricht Borophene shines alone as 2-D plasmonic material
21.11.2017 | Rice University

nachricht Quantum dots amplify light with electrical pumping
21.11.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>