Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanowires Get into the Groove

22.08.2011
Weizmann Institute scientists have discovered that growing nanowires out, not up, can keep them in line.

Growing up is not easy, especially for tiny nanowires: With no support or guidance, nanowires become unruly, making it difficult to harness their full potential as effective semiconductors.

Prof. Ernesto Joselevich of the Weizmann Institute’s Chemistry Faculty has found a way to grow semiconductor nanowires out, not up, on a surface, providing, for the first time, the much-needed guidance to produce relatively long, orderly, aligned structures. Since semiconductors with controlled structures are at the core of the most advanced technologies, this new research will hopefully enable the production of semiconductor nanostructures with enhanced electronic and optical properties, suitable for a wide range of applications including LEDs, lasers, information storage media, transistors, computers, photovoltaics and more.

Joselevich, Ph.D. student David Tsivion and postdoctoral fellow Mark Schvartzman of the Materials and Interfaces Department grew nanowires made of gallium nitride (GaN) using a method that usually produces vertical nanowires with excellent optical and electronic properties. These vertical wires only become unruly once they are harvested and assembled into arrays. To bypass this problem, the scientists used sapphire as a base on which to grow the nanowires. But rather than growing them on a smooth surface, deliberately cut the sapphire along different planes of the crystal, resulting in various surface patterns including ‘steps’ of nano-meter dimensions between the different planes of the crystal, as well as accordion-like, V-shaped grooves.

Their results, recently published in Science, show that surface steps and grooves have a strong guiding effect, coaxing the nanowires to grow horizontally along their edges or within the grooves and producing well-aligned, millimeter-long nanowire arrays. In contrast, current methods of assembling nanowires horizontally on smooth surfaces result in disorderly nanowires only micrometers in length with subpar properties.

Joselevich: ‘It was surprising to discover that the optical and electronic properties of our nanowires were just as good – if not better – than those grown vertically, because growing semiconductors on a surface usually introduces defects that degrade their quality.’

Although it is still not fully clear how a method that normally produces vertical nanowires works to create horizontal growth in the new study, Joselevich and his team have managed to combine, in a single step, the synthesis and assembly of well-structured nanowires with unique properties suitable for a wide range of applications, by simply getting them ‘into the groove.’ ?

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,700 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.

Batya Greenman | idw
Further information:
http://wis-wander.weizmann.ac.il

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>