Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanowire-bridging transistors open way to next-generation electronics

15.05.2014

A new approach to integrated circuits, combining atoms of semiconductor materials into nanowires and structures on top of silicon surfaces, shows promise for a new generation of fast, robust electronic and photonic devices.

Engineers at the University of California, Davis, have recently demonstrated three-dimensional nanowire transistors using this approach that open exciting opportunities for integrating other semiconductors, such as gallium nitride, on silicon substrates.


Nanowires grown on Silicon

Video (1 min 21 sec)

Videography by Andy Fell/UC Davis

"Silicon can't do everything," said Saif Islam, professor of electrical and computer engineering at UC Davis. Circuits built on conventionally etched silicon have reached their lower size limit, which restricts operation speed and integration density. Additionally, conventional silicon circuits cannot function at temperatures above 250 degrees Celsius (about 480 degrees Fahrenheit), or handle high power or voltages, or optical applications.

The new technology could be used, for example, to build sensors that can operate under high temperatures, for example inside aircraft engines.

"In the foreseeable future, society will be dependent on a variety of sensors and control systems that operate in extreme environments, such as motor vehicles, boats, airplanes, terrestrial oil and ore extraction, rockets, spacecraft, and bodily implants," Islam said.

Devices that include both silicon and nonsilicon materials offer higher speeds and more robust performance. Conventional microcircuits are formed from etched layers of silicon and insulators, but it's difficult to grow nonsilicon materials as layers over silicon because of incompatibilities in crystal structure (or "lattice mismatch") and differences in thermal properties.

Instead, Islam's laboratory at UC Davis has created silicon wafers with "nanopillars" of materials such as gallium arsenide, gallium nitride or indium phosphide on them, and grown tiny nanowire "bridges" between nanopillars.

"We can't grow films of these other materials on silicon, but we can grow them as nanowires," Islam said.

The researchers have been able to make these nanowires operate as transistors, and combine them into more complex circuits as well as devices that are responsive to light. They have developed techniques to control the number of nanowires, their physical characteristics and consistency.

Islam said the suspended structures have other advantages: They are easier to cool and handle thermal expansion better than planar structures — a relevant issue when mismatched materials are combined in a transistor.

The technology also leverages the well-established technology for manufacturing silicon integrated circuits, instead of having to create an entirely new route for manufacturing and distribution, Islam said.

The work is described in a series of recent papers in the journals Advanced Materials, Applied Physics Letters and IEEE Transactions on Nanotechnology with co-authors Jin Yong Oh at UC Davis; Jong-Tae Park, University of Incheon, South Korea; Hyun-June Jang and Won-Ju Cho, Kwangwoon University, South Korea. Funding was provided by the U.S. National Science Foundation and the government of South Korea.

About UC Davis

UC Davis is a global community of individuals united to better humanity and our natural world while seeking solutions to some of our most pressing challenges. Located near the California state capital, UC Davis has more than 34,000 students, and the full-time equivalent of 4,100 faculty and other academics and 17,400 staff. The campus has an annual research budget of over $750 million, a comprehensive health system and about two dozen specialized research centers. The university offers interdisciplinary graduate study and 99 undergraduate majors in four colleges and six professional schools.

Additional information:

Media contact(s):

Andy Fell | Eurek Alert!
Further information:
http://news.ucdavis.edu/search/news_detail.lasso?id=10929

More articles from Materials Sciences:

nachricht Getting closer to porous, light-responsive materials
26.07.2017 | Kyoto University

nachricht Multitasking monolayers
25.07.2017 | Vanderbilt University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>