Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles: Two-faced materials boost hydrogen production

13.09.2012
Inexpensive hybrid metal and oxide nanostructures prove to be a catalyst that enhance sunlight-powered hydrogen production
Hydrogen is crucial for the oil-refining industry and the production of essential chemicals such as the ammonia used in fertilizers. Since producing hydrogen is costly, scientists have long searched for alternative, energy-efficient methods to separate hydrogen atoms from abundant sources such as water.

Nanometer-scale structures consisting of cheap metal and oxide spheres were recently demonstrated as an excellent catalyst for a hydrogen-production reaction powered only by sunlight. The study was completed by Ming-Yong Han and his colleagues of the A*STAR Institute of Materials Research and Engineering, Singapore, working in collaboration with a team of researchers from Singapore and France1.
Han and his team mixed 50-nanometer diameter spheres of gold into a titanium dioxide precursor such that a sphere of titanium dioxide formed on the side of each gold nanoparticle. Structures with this two-sphere arrangement are known as Janus particles, named after the two-headed god from Roman mythology. While the Janus particles were suspended in a mixture of water and isopropyl alcohol, Han and co-workers shone visible light on them and measured hydrogen production, which proceeded at a rate as fast as 2 milliliters per minute.

The researchers then used theoretical models to show that this production rate was caused by so-called plasmonics effects: that is, the electrons on the surface of the gold nanoparticle at the junction with the titanium dioxide coupled to the incoming light and formed light–matter hybrid particles called plasmon polaritons. The energy absorbed by these particles then passed into the surrounding liquid, and this drove the hydrogen-releasing chemical reaction.

“Our work provides insight into mechanisms that will be useful for the future development of high-performance photocatalysts,” says Han. Indeed, Han and his co-workers were able to improve the efficiency of the hydrogen production even further: they increased the area of the metal–oxide interface by using larger gold nanoparticles.

The Janus particles were 100 times more efficient as a catalyst for hydrogen production than bare gold nanoparticles. Moreover, they were over one-and-a-half times better than another common type of plasmonic nanoparticle, core–shell particles, in which the oxide material forms a coating around the metal nanoparticle.

“We next hope to develop a better understanding of the processes that occur at the metal–titanium-dioxide interface using a combination of experimental observations and theoretical simulations,” says Han. “This will get us closer to our ultimate goal of using solar illumination as an abundant source of renewable energy.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Journal information
The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Nagoya University researchers break down plastic waste
29.05.2017 | Nagoya University

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>