Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles: Two-faced materials boost hydrogen production

13.09.2012
Inexpensive hybrid metal and oxide nanostructures prove to be a catalyst that enhance sunlight-powered hydrogen production
Hydrogen is crucial for the oil-refining industry and the production of essential chemicals such as the ammonia used in fertilizers. Since producing hydrogen is costly, scientists have long searched for alternative, energy-efficient methods to separate hydrogen atoms from abundant sources such as water.

Nanometer-scale structures consisting of cheap metal and oxide spheres were recently demonstrated as an excellent catalyst for a hydrogen-production reaction powered only by sunlight. The study was completed by Ming-Yong Han and his colleagues of the A*STAR Institute of Materials Research and Engineering, Singapore, working in collaboration with a team of researchers from Singapore and France1.
Han and his team mixed 50-nanometer diameter spheres of gold into a titanium dioxide precursor such that a sphere of titanium dioxide formed on the side of each gold nanoparticle. Structures with this two-sphere arrangement are known as Janus particles, named after the two-headed god from Roman mythology. While the Janus particles were suspended in a mixture of water and isopropyl alcohol, Han and co-workers shone visible light on them and measured hydrogen production, which proceeded at a rate as fast as 2 milliliters per minute.

The researchers then used theoretical models to show that this production rate was caused by so-called plasmonics effects: that is, the electrons on the surface of the gold nanoparticle at the junction with the titanium dioxide coupled to the incoming light and formed light–matter hybrid particles called plasmon polaritons. The energy absorbed by these particles then passed into the surrounding liquid, and this drove the hydrogen-releasing chemical reaction.

“Our work provides insight into mechanisms that will be useful for the future development of high-performance photocatalysts,” says Han. Indeed, Han and his co-workers were able to improve the efficiency of the hydrogen production even further: they increased the area of the metal–oxide interface by using larger gold nanoparticles.

The Janus particles were 100 times more efficient as a catalyst for hydrogen production than bare gold nanoparticles. Moreover, they were over one-and-a-half times better than another common type of plasmonic nanoparticle, core–shell particles, in which the oxide material forms a coating around the metal nanoparticle.

“We next hope to develop a better understanding of the processes that occur at the metal–titanium-dioxide interface using a combination of experimental observations and theoretical simulations,” says Han. “This will get us closer to our ultimate goal of using solar illumination as an abundant source of renewable energy.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Journal information
The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>