Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanomaterial makes laser light more applicable

28.03.2017

International research team creates hybrid material with a fascinating structure

Light is absorbed differently, depending on the material it shines on. An international research team including material scientists from Kiel University has created a complex hybrid material with the ability to absorb light with a unique broad range of wavelengths. In addition to that it scatters light which makes it really interesting for industrial applications.That could mean an important step in optoelectronic technologies towards laser light as a successor to LEDs.


SEM images demonstrate the morphologies of tetrapodes before (b) and after (c) the sputtering process.

Image: Yogendra Mishra

The results published in Nature Scientific Reports represent the output of a broad international collaboration, including scientists from Germany, Moldova, Denmark and Australia.
“As material scientists we are always in demand to develop nanomaterials that can absorb a wide range of light,” explains Dr. Yogendra Mishra.

He is leading an independent subgroup of the Functional Materials working group of Professor Rainer Adelung, Institute for Materials Science at Kiel University. This group has expertise in making tetrapods, four-armed zinc oxide structures. “We have now made tetrapods in a new way and created a hybrid material of carbon and inorganic material. It demonstrates the ability to absorb a broad range of wavelengths from ultraviolet to infrared – and it also diffuses light,” Mishra explains. “The complex 3D-tetrapod-architecture of our material spreads light in all directions.”

This scattering effect of the hybrid material is urgently needed for using laser based lighting in optoelectronic technologies as in automobile industry. “Products of modern light technology should be as bright as possible without producing a lot of useless heat. That is the case with a normal bulb, which have almost become museum artefacts. The LEDs of today are better but powerful laser-based lights would be most efficient,” says material scientist Mishra. The reason why Laser based lighting has not yet been realized for a broad application in industry is exactly its power, which could damage the eyes.

Therefore, the international research team tried to develop hybrid material elements which can degrade the brightness of laser light while maintaining its high power. That is the effect of the complex 3D-tetrapod-architecture of the new hybrid material, developed in a close collaboration. At the Hamburg University of Technology (TUHH) the zinc oxide tetrapods from Kiel were transformed into aerographite tetrapods of carbon.

A team from the Technical University of Moldova used its special sputtering machine to put a huge amount of smaller zinc oxide nanocrystals – also with the shape of tetrapods – on its surface. The result is a hybrid material with a fascinating spatial architecture consisting of Aerographite microtetrapods decorated with zinc oxide nanotetrapods. Colleagues from the University of Copenhagen and the University of Sydney investigated different properties of the newly developed nanomaterial.

“The zinc oxide-Aerographite hybrid architectured materials are technologically very important and our goal was to develop cost-effective approaches for their fabrication as well as to achieve a proper understanding of their unique properties,” says Professor Ion Tiginyanu, Director of the National Centre for Materials Study and Testing at the Technical University of Moldova. Used as a scattering element, the research team is convinced that the material is a very promising candidate for optoelectronic technologies, especially since the technological process behind it is simple and economical.

Original publication
Ion Tiginyanu, Lidia Ghimpu, Jorit Gröttrup, Vitalie Postolache,
Matthias Mecklenburg, Marion A. Stevens-Kalce, Veaceslav Ursaki, Nader Payami, Robert Feidenhansl, Karl Schulte, Rainer Adelung, Yogendra Kumar Mishra. Strong light scattering and broadband (UV to IR) photoabsorption
in stretchable 3D hybrid architectures based on Aerographite decorated by ZnO nanocrystallites. Sci. Rep. 6, 32913, doi: 10.1038/srep32913 (2016).

Photos are available to download:

http://www.uni-kiel.de/download/pm/2017/2017-084-1.jpg
An international research team developed a hybrid nano material with a fascinating structure of tetrapods. Image: Yogendra Mishra

http://www.uni-kiel.de/download/pm/2017/2017-084-2.jpg
During the sputtering process Aerographite microtetrapods get decorated with zinc oxide nanotetrapods. Image: Yogendra Mishra

http://www.uni-kiel.de/download/pm/2017/2017-084-3.jpg
SEM images demonstrate the morphologies of tetrapodes before (b) and after (c) the sputtering process.
Image: Yogendra Mishra

http://www.uni-kiel.de/download/pm/2017/2017-084-4.jpg
The scattering behaviour of the new nano hybrid material (generated by a laser pointer with green light) degrades the brightness of laser light. That way it becomes more applicable for industry.
Photo: Yogendra Mishra

http://www.uni-kiel.de/download/pm/2017/2017-084-5.jpg
Dr. Yogendra Mishra from Kiel University shows the scattering property of the new nano hybrid material of carbon and zinc oxide.
Photo: Julia Siekmann, CAU

http://www.uni-kiel.de/download/pm/2017/2017-084-6.jpg
The laser light spreads over the material instead of concentrating on just one point.
Photo: Julia Siekmann, CAU

Contact:
PD Dr. habil. Yogendra Kumar Mishra
Group Leader: Functional Nanomaterials
Institute for Materials Science, Kiel University
Email: ykm@tf.uni-kiel.de
Phone:+49 431 880 6183

Ion Tiginyanu
Director of the National Centre for Materials Study and Testing
Technical University of Moldova
Email: tiginyanu@asm.md
Phone: +373 22 27 40 47

Details, which are only a millionth of a millimetre in size: This is what the research focus "Kiel Nano, Surface and Interface Science – KiNSIS" at Kiel University has been working on. In the nano-cosmos, different laws prevail than in the macroscopic world - those of quantum physics. Through intensive, interdisciplinary cooperation between materials science, chemistry, physics, biology, electrical engineering, computer science, food technology and various branches of medicine, the research focus aims to understand the systems in this dimension and to implement the findings in an application-oriented manner. Molecular machines, innovative sensors, bionic materials, quantum computers, advanced therapies and much more could be the result. More information at www.kinsis.uni-kiel.de

Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Redaktion: Julia Siekmann
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de, Twitter: www.twitter.com/kieluni Facebook: www.facebook.com/kieluni, Instagram: instagram.com/kieluni

Weitere Informationen:

http://www.uni-kiel.de/pressemeldungen/index.php?pmid=2017-084-laser&lang=en

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

More articles from Materials Sciences:

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures
16.11.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>