Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT researchers develop new ultralight, ultrastiff 3D printed materials

20.06.2014

Imagine a material with the same weight and density as aerogel -- a material so light it's called 'frozen smoke' -- but with 10,000 times more stiffness. This material could have a profound impact on the aerospace and automotive industries as well as other applications where lightweight, high-stiffness and high-strength materials are needed.

Lawrence Livermore National Laboratory (LLNL) and Massachusetts Institute of Technology (MIT) researchers have developed a material with these properties using additive micro-manufacturing processes. The research team's findings are published in a June 20 article in the journal Science.


Lawrence Livermore Engineer Xiaoyu "Rayne" Zheng -- lead author of the Science article -- studies a macroscale version of the unit cell, which constitutes the ultralight, ultrastiff material. Photos by Julie Russell/LLNL.

Titled "Ultralight, Ultrastiff Mechanical Metamaterials," the article describes the team's development of micro-architected metamaterials -- artificial materials with properties not found in nature -- that maintain a nearly constant stiffness per unit mass density, even at ultralow density. Materials with these properties could someday be used to develop parts and components for aircraft, automobiles and space vehicles.

Most lightweight cellular materials have mechanical properties that degrade substantially with reduced density because their structural elements are more likely to bend under applied load. The team's metamaterials, however, exhibit ultrastiff properties across more than three orders of magnitude in density.

"These lightweight materials can withstand a load of at least 160,000 times their own weight," said LLNL Engineer Xiaoyu "Rayne" Zheng, lead author of the Science article. "The key to this ultrahigh stiffness is that all the micro-structural elements in this material are designed to be over constrained and do not bend under applied load."

The observed high stiffness is shown to be true with multiple constituent materials such as polymers, metals and ceramics, according to the research team's findings.

"Our micro-architected materials have properties that are governed by their geometric layout at the microscale, as opposed to chemical composition," said LLNL Engineer Chris Spadaccini, corresponding author of the article, who led the joint research team. "We fabricated these materials with projection micro-stereolithography."

This additive micro-manufacturing process involves using a micro-mirror display chip to create high-fidelity 3D parts one layer at a time from photosensitive feedstock materials. It allows the team to rapidly generate materials with complex 3D micro-scale geometries that are otherwise challenging or in some cases, impossible to fabricate.

"Now we can print a stiff and resilient material using a desktop machine," said MIT professor and key collaborator Nicholas Fang. "This allows us to rapidly make many sample pieces and see how they behave mechanically."

The team was able to build microlattices out of polymers, metals and ceramics.

For example, they used polymer as a template to fabricate the microlattices, which were then coated with a thin-film of metal ranging from 200 to 500 nanometers thick. The polymer core was then thermally removed, leaving a hollow-tube metal strut, resulting in ultralight weight metal lattice materials.

"We have fabricated an extreme, lightweight material by making these thin-film hollow tubes," said Spadaccini, who also leads LLNL's Center for Engineered Materials, Manufacturing and Optimization. "But it was all enabled by the original polymer template structure."

The team repeated the process with polymer mircolattices, but instead of coating it with metal, ceramic was used to produce a thin-film coating about 50 nanometers thick. The density of this ceramic micro-architected material is similar to aerogel.

"It's among the lightest materials in the world," Spadaccini said. "However, because of its micro-architected layout, it performs with four orders of magnitude higher stiffness than aerogel at a comparable density."

Lastly, the team produced a third ultrastiff micro-architected material using a slightly different process. They loaded a polymer with ceramic nanoparticles to build a polymer-ceramic hybrid microlattice. The polymer was removed thermally, allowing the ceramic particles to densify into a solid. The new solid ceramic material also showed similar strength and stiffness properties.

"We used our additive micro-manufacturing techniques to fabricate mechanical metameterials with unprecedented combinations of properties using multiple base material constituents - polymers, metals, and ceramics," Spadaccini said.

The LLNL-MIT teams' new materials are 100 times stiffer than other ultra-lightweight lattice materials previously reported in academic journals.

In addition to Spadaccini, Fang and Zheng, the LLNL-MIT research team consisted of LLNL researchers (Todd Weisgraber; Maxim Shusteff; Joshua Deotte; Eric Duoss; Joshua Kuntz; Monika Biener; Julie Jackson; and Sergei Kucheyev); and MIT researchers (Howon Lee and Qi "Kevin" Ge).

The Department of Defense's Defense Advanced Research Projects Agency (DARPA) and Lawrence Livermore's Laboratory Directed Research and Development (LDRD) program funded the team's research.

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Ken Ma | Eurek Alert!
Further information:
https://www.llnl.gov/news/newsreleases/2014/Jun/NR-14-06-06.html#.U6QNl2GKDct

Further reports about: LLNL MIT Security coating materials metamaterials nanometers properties stiffness thin-film weight

More articles from Materials Sciences:

nachricht Phagraphene, a 'relative' of graphene, discovered
03.09.2015 | Moscow Institute of Physics and Technology

nachricht For 2-D boron, it's all about that base
03.09.2015 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Lighter with Laser Welding

03.09.2015 | Process Engineering

For 2-D boron, it's all about that base

03.09.2015 | Materials Sciences

Phagraphene, a 'relative' of graphene, discovered

03.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>