Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microscopy Reveals ‘Atomic Antenna’ Behavior in Graphene

03.02.2012
Atomic-level defects in graphene could be a path forward to smaller and faster electronic devices, according to a study led by researchers at the Department of Energy’s Oak Ridge National Laboratory.

With unique properties and potential applications in areas from electronics to biodevices, graphene, which consists of a single sheet of carbon atoms, has been hailed as a rising star in the materials world.

Now, an ORNL study published in Nature Nanotechnology suggests that point defects, composed of silicon atoms that replace individual carbon atoms in graphene, could aid attempts to transfer data on an atomic scale by coupling light with electrons.

“In this proof of concept experiment, we have shown that a tiny wire made up of a pair of single silicon atoms in graphene can be used to convert light into an electronic signal, transmit the signal and then convert the signal back into light,” said coauthor Juan-Carlos Idrobo, who holds a joint appointment at ORNL and Vanderbilt University.

An ORNL-led team discovered this novel behavior by using aberration-corrected scanning transmission electron microscopy to image the plasmon response, or optical-like signals, of the point defects. The team’s analysis found that the silicon atoms act like atomic-sized antennae, enhancing the local surface plasmon response of graphene, and creating a prototypical plasmonic device.

“The idea with plasmonic devices is that they can convert optical signals into electronic signals,” Idrobo said. “So you could make really tiny wires, put light in one side of the wire, and that signal will be transformed into collective electron excitations known as plasmons. The plasmons will transmit the signal through the wire, come out the other side and be converted back to light.”

Although other plasmonic devices have been demonstrated, previous research in surface plasmons has been focused primarily on metals, which has limited the scale at which the signal transfer occurs.

“When researchers use metal for plasmonic devices, they can usually only get down to 5 - 7 nanometers,” said coauthor Wu Zhou. “But when you want to make things smaller, you always want to know the limit. Nobody thought we could get down to a single atom level.”

In-depth analysis at the level of a single atom was made possible through the team’s access to an electron microscope that is part of ORNL’s Shared Research Equipment (ShaRE) User Facility.

“It is the one of only a few electron microscopes in the world that we can use to look at and study materials and obtain crystallography, chemistry, bonding, optical and plasmon properties at the atomic scale with single atom sensitivity and at low voltages,” Idrobo said. “This is an ideal microscope for people who want to research carbon-based materials, such as graphene.”

In addition to its microscopic observations, the ORNL team employed theoretical first-principles calculations to confirm the stability of the observed point defects. The full paper, titled “Atomically Localized Plasmon Enhancement in Monolayer Graphene,” is available online here: http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2011.252.html.

Coauthors are ORNL’s Jagjit Nanda; and Jaekwang Lee, Sokrates Pantelides and Stephen Pennycook, who are jointly affiliated with ORNL and Vanderbilt. The research was supported by DOE’s Office of Science, which also sponsors ORNL’s ShaRE User Facility; by the National Science Foundation; and by the McMinn Endowment at Vanderbilt University. The study used resources of the National Energy Research Scientific Computer Center, which is supported by DOE’S Office of Science.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Image: http://www.ornl.gov/info/press_releases/photos/plasmon_naturenano.jpg

Caption: Electron microscopy at Oak Ridge National Laboratory has demonstrated that silicon atoms (seen in white) can act like "atomic antennae" in graphene to transmit an electronic signal at the atomic scale.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:

Twitter - http://twitter.com/oakridgelabnews
RSS Feeds - http://www.ornl.gov/ornlhome/rss_feeds.shtml
Flickr - http://www.flickr.com/photos/oakridgelab
YouTube - http://www.youtube.com/user/OakRidgeNationalLab
LinkedIn - http://www.linkedin.com/companies/oak-ridge-national-laboratory
Facebook - http://www.facebook.com/Oak.Ridge.National.Laboratory

Morgan McCorkle | Newswise Science News
Further information:
http://www.ornl.gov

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>