Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New material can enhance energy, computer, lighting technologies

17.11.2011
Crystal erbium compound offers superior optical properties

Arizona State University researchers have created a new compound crystal material that promises to help produce advances in a range of scientific and technological pursuits.

ASU electrical engineering professor Cun-Zheng Ning says the material, called erbium chloride silicate, can be used to develop the next generations of computers, improve the capabilities of the Internet, increase the efficiency of silicon-based photovoltaic cells to convert sunlight into electrical energy, and enhance the quality of solid-state lighting and sensor technology.

Ning’s research team of team of students and post-doctoral degree assistants help synthesize the new compound in ASU’s Nanophotonics Lab in the School of Electrical, Computer and Energy Engineering, one of the university’s Ira A. Fulton Schools of Engineering.

The lab’s erbium research is supported by the U.S. Army Research Office and U.S. Air Force Office of Scientific Research. Details about the new compound are reported in the Optical Materials Express on the website of the Optical Society of America.

The breakthrough involves the first-ever synthesis of a new erbium compound in the form of a single-crystal nanowire, which has superior properties compared to erbium compounds in other forms.

Erbium is one of the most important members of the rare earth family in the periodic table of chemical elements. It emits photons in the wavelength range of 1.5 micrometers, which are used in the optical fibers essential to high-quality performance of the Internet and telephones.

Erbium is used in doping optical fibers to amplify the signal of the Internet and telephones in telecommunications systems. Doping is the term used to describe the process of inserting low concentrations of various elements into other substances as a way to alter the electrical or optical properties of the substances to produce desired results. The elements used in such processes are referred to as dopants.

“Since we could not dope as many erbium atoms in a fiber as we wish, fibers had to be very long to be useful for amplifying an Internet signal. This makes integrating Internet communications and computing on a chip very difficult,” Ning explains.

“With the new erbium compound, 1,000 times more erbium atoms are contained in the compound. This means many devices can be integrated into a chip-scale system,” he says. “Thus the new compound materials containing erbium can be integrated with silicon to combine computing and communication functionalities on the same inexpensive silicon platform to increase the speed of computing and Internet operation at the same time.”

Erbium materials can also be used to increase the energy-conversion efficiency of silicon solar cells.

Silicon does not absorb solar radiation with wavelengths longer than 1.1 microns, which results in waste of energy – making solar cells less efficient.

Erbium materials can remedy the situation by converting two or more photons carrying small amounts of energy into one photon that is carrying a larger amount of energy. The single, more powerful photon can then be absorbed by silicon, thus increasing the efficiency of solar cells.

Erbium materials also help absorb ultraviolet light from the sun and convert it into photons carrying small amounts of energy, which can then be more efficiently converted into electricity by silicon cells. This color-conversion function of turning ultraviolet light into other visible colors of light is also important in generating white light for solid-state lighting devices.

While erbium’s importance is well-recognized, producing erbium materials of high quality has been challenging, Ning says.

The standard approach is to introduce erbium as a dopant into various host materials, such as silicon oxide, silicon, and many other crystals and glasses.

“One big problem has been that we have not been able to introduce enough erbium atoms into crystals and glasses without degrading optical quality, because too many of these kinds of dopants would cluster, which lowers the optical quality,” he says.

What is unique about the new erbium material synthesized by Ning’s group is that erbium is no longer randomly introduced as a dopant. Instead, erbium is part of a uniform compound and the number of erbium atoms is a factor of 1,000 more than the maximum amount that can be introduced in other erbium-doped materials.

Increasing the number of erbium atoms provides more optical activity to produce stronger lighting. It also enhances the conversion of different colors of light into white light to produce higher-quality solid-state lighting and enables solar cells to more efficiently convert sunlight in electrical energy.

In addition, since erbium atoms are organized in a periodic array, they do not cluster in this new compound. The fact that the material has been produced in a high-quality single-crystal form makes the optical quality superior to the other doped materials, Ning says.

Like many scientific discoveries, the synthesis of this new erbium material was made somewhat by accident.

“Similar to what other researchers are doing, we were originally trying to dope erbium into silicon nanowires. But the characteristics demonstrated by the material surprised us,” he says. “We got a new material. We did not know what it was, and there was no published document that described it. It took us more than a year to finally realize we got a new single-crystal material no one else had produced.”

Ning and his team are now trying to use the new erbium compound for various applications, such as increasing silicon solar cell efficiency and making miniaturized optical amplifiers for chip-scale photonic systems for computers and high-speed Internet.

“Most importantly,” he says, “there are many things we have yet to learn about what can be achieved with use of the material. Our preliminary studies of its characteristics show it has many amazing properties and superior optical quality. More exciting discoveries are waiting to be made.”

Learn more about Ning's nanophotonics group.

Joe Kullman, Joseph.Kullman@asu.edu
(480) 965-8122
Ira A. Fulton Schools of Engineering

Joe Kullman | EurekAlert!
Further information:
http://www.asu.edu

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>