Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New material provides a key to explaining superconductivity

20.10.2009
Superconductors are materials that conduct electricity with almost no resistance, and engineers are simply crazy about them.

Physicists around the world are working hard to explain this physical phenomenon. Yet, to this day, nobody knows exactly why some materials suddenly become superconductors below a certain temperature. Researchers at Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) present new findings in the current issue of Nature Materials that could finally resolve a long-standing dispute as to which theory is correct.

One thing is for sure: a phase transition from "non-conducting" to "conducting" occurs at around the transition temperature - below which electrical resistance drops to barely measurable. The atoms in the crystalline lattice rearrange themselves, and the material can take on new properties. One theory proposes that superconductivity is a property already inherent in the source materials used to produce superconductors. These source materials are always insulators; that is, materials that do not conduct electricity.

They only become conductive after a process called doping, where foreign atoms are incorporated into the crystalline lattice. The second theory proposes that two phases "compete" as the material approaches the transition temperature, and that superconductivity arises out of this phenomenon. "Our findings confirm the correctness of this [latter] theory", says Dimitri Argyriou of HZB.

He and his team investigated a lanthanum-strontium-manganate compound. This material is not an actual superconductor, but it is similarly produced by doping an insulating material. As it is, however, lanthanum-strontium-manganate is a poor conductor. Argyriou and his team studied this novel metal by neutron scattering and discovered a difference from normal metals.

In pure metals such as copper, there are free electrons that allow the flow of electric current, where present theory has it that these electrons accumulate to form a so-called electron gas.

In lanthanum-strontium-manganate, the HZB researchers have discovered, the free electrons only briefly behave as an electron gas. They do not "forget" that they originated from an insulator and suddenly become trapped again in the crystalline lattice. They actually alternate between these two states, becoming free (conductive) for a time, and then becoming trapped (non-conductive) again.

"This behaviour proves that the insulator property remains anchored in the doped material's memory, and that the property of superconductivity does not exist in the source material", Dimitri Argyriou concludes.

Institute Complex Magnetic Materials
Dr. Dimitri Argyriou
Tel.: (030) 8062-3016
Fax: (030) 8062-2999
Email: argyriou@helmholtz-berlin.de
Press office
Dr. Ina Helms
Tel.: (030) 8062-2034
Fax: (030) 8062-2998
Email: ina.helms@helmholtz-berlin.de

Dr. Ina Helms | idw
Further information:
http://www.helmholtz-berlin.de

Further reports about: HZB Superconductivity crystalline lattice electron gas

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>