Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic Chameleons

17.03.2011
New displays that change color under the influence of magnets

Chinese researchers have created microscopic capsules that change color when a magnetic field is applied. When the capsules are collected into an array, magnetic fields can be used to create colored patterns on an extremely small scale.


Many animals use tiny physical changes at their skin or surface to alter their color. Chameleons do this by pumping slightly different amount of dye into the surface of their skins. Other animals, such as some beetles, fish and birds, have special arrays of light-reflecting cells that are moved apart very slightly by the injection or removal of a fluid, or by tiny stretching of their skin. These nanometer changes in spacing are enough to change the wavelength of light that is reflected and hence the color that we see.

Scientists have been able to replicate this effect to some extent using regular clusters of tiny spheres known as colloidal crystals. The spacing between the centres of the spheres determines the wavelength of light that is reflected and, hence the color of the crystal. Simple actions such as adding fluid (as described above) or swelling the size of the particles have been used to change the color.

If the spheres used are magnetic, then a magnetic field can be used to control the spacing between them, and, of course, the color. This phenomenon has been shown previously, but stable systems were not created and the color seen was very dependent on viewing angle.

Now, as described in the journal Advanced Functional Materials, Zhongze Gu and coworkers at the Southeast University in Nanjing have created stable droplets of particles whose color can be tuned through a wide range and which does not depend on where the viewer stands.

Their breakthrough was to encapsulate clusters of magnetic spheres in a liquid within tiny, transparent resin beads. The beads are highly uniform and could be used as individual pixels in a display. Applying different magnetic fields causes the spheres within the capsules to move further apart or closer together, resulting in different colors. The picture shows the effect of applying different magnetic fields.

Another clever idea of Gu and his team was to use automated technology to create the capsules. Uniform sizes and composition are required if such materials are to be used as displays, and this was achieved by using microfluidic techniques, where reactions occur continuously as ingredients travel along the narrow channels of a very small-scale reactor. Tuning the flow rates of various reactants easily controls the capsulesf size, shell thickness and shape.

The scientists are proud of their work and imagine that it could be adapted to be used with electronic magnetic fields, using the full potential of the tiny scale of the microcapsules and leading to gmore complex and interesting patterns.h

C. Zhu, W. Y. Xu, L. S. Chen, W. D. Zhang, H. Xu, and Z. Z. Gu, gMagnetochromatic Microcapsule Array for Displayh, Adv. Funct. Mater. 2011; DOI: 10.1002:adfm.201002296.

Contact:
Prof. Zhongze Gu
State Key Laboratory of Bioelectronics
Sipailou 2, Nanjing, P. R. China
EmailFgu@seu.edu.cn
Tel/Fax: +86-25-83795635

Carmen Teutsch | Wiley-VCH
Further information:
http://www.wiley-vch.de
http://www.lmbe.seu.edu.cn/~guzhz/English/Eindex.htm

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>