Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light and matter

10.05.2012
Chemists and physicists are collaborating within a new research group at the University of Würzburg. Their stated objective is to enable the manufacture of new materials with customized properties. The German Research Foundation (DFG) is funding the project.

Is this what the energy source of the future will look like? Specially synthesized molecules split water into its components, hydrogen and oxygen, with the help of sunlight. The plan is for this process, which occurs in nature as “photosynthesis”, to be replicated in the laboratory to free the world from its dependency on fossil fuels. This artificial photosynthesis should supply mankind with a virtually inexhaustible and clean energy carrier.

Unfortunately, the dream of artificial photosynthesis as an energy supplier on a grand scale is still a long way off becoming a reality. Scientists have yet to acquire the necessary knowledge concerning the fundamental processes inside potential hydrogen producers. However, a new research group at the University of Würzburg is about to start work on this, bringing together scientists from various branches of physics and chemistry. Its spokesman is Professor Tobias Brixner, Chairman of the Department of Physical Chemistry I. The German Research Foundation (DFG) will be providing around EUR 2.3 million in funding for the project over the next three years.

New materials with specific properties

Molecular aggregates and their reactions to light will be the main focus of the Würzburg research group. “We will examine the interaction between light and matter with a view to understanding and controlling the dynamic processes and optical phenomena,” says Brixner. It is hoped that their findings will enable the scientists to customize new materials with specific properties.

Of course, facilitating the breakthrough of artificial photosynthesis will be just one of the goals with these new materials. Extremely energy-efficient light sources, tap-proof encryption technology, super-fast quantum computers, effective photovoltaic elements, nano-components that can repair themselves: these will all be conceivable once the fundamental processes in the molecular aggregates have been clarified and understood.

Research on molecular aggregates

Molecular aggregates: chemists understand these as the smallest building blocks in macroscopic systems such as liquids, solutions, or crystals. Inside these, molecules are arranged in specific structures with strong or weak links binding them. The diverse interactions between the individual blocks determine what happens inside the aggregates when light falls on them.

“What makes molecular aggregates so special and therefore appealing compared, for example, to inorganic solids is the fact that the properties of these molecular ‘basic building blocks’ can be varied deliberately,” explains Brixner. Changes at the microscopic level result in changes on a macroscopic scale as well. Though, the exact processes are still unknown. “In the past, although scientists went to great lengths examining countless molecules optically, there was generally no systematic variation of aggregates,” says Brixner. In many cases, therefore, current knowledge is inadequate for a prediction of the properties of a complex system based on the properties of the underlying molecular building blocks.

Better understanding of internal processes

This is where the work of the Würzburg research group will begin: the group will spend the next three years closely studying the interactions between light and matter in molecular aggregates. “Once we are familiar with the fundamental rules of the interactions, it should be possible to produce a new generation of materials that exceed those we have today,” states Brixner.

The Würzburg research group possesses the knowledge and technology required for this research. Its members come from the fields of theoretical, physical, and organic chemistry as well as experimental physics; they have the necessary expertise in all the requisite research methods and in the respective equipment – ranging from spectroscopy to photoconductivity measurement. The bundling of available experimental and theoretical resources will enable “unique cooperative research in the area of light-matter interaction”.

The members of the research group are as follows:

from Physical and Theoretical Chemistry:
• Prof. Dr. Tobias Brixner
• Prof. Dr. Volker Engel
• Prof. Dr. Bernd Engels
from Organic Chemistry:
• Prof. Dr. Christoph Lambert
• Prof. Dr. Frank Würthner
from Experimental Physics:
• Prof. Dr. Vladimir Dyakonov
• PD Dr. Carsten Deibel
• Prof. Dr. Jens Pflaum
as well as the following associated junior researchers:
• Dr. Florian Beuerle
• Dr. Gustavo Fernández
• Dr. Patrick Nürnberger
The German Research Foundation (DFG) has decided to set up a total of six new research groups and one clinical research group. These research consortia should provide scientists with the opportunity to “address current and urgent issues in their fields and to develop new methods for tackling them”, according to a DFG press release. The foundation currently funds 191 research groups.
Contact
Prof. Dr. Tobias Brixner, T: +49 (0)931 31-86330, e-mail: brixner@phys-chemie.uni-wuerzburg.de

Gunnar Bartsch | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Materials Sciences:

nachricht Game-changing finding pushes 3D-printing to the molecular limit
20.06.2018 | University of Nottingham

nachricht Creating a new composite fuel for new-generation fast reactors
20.06.2018 | Lobachevsky University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>