Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light and matter

10.05.2012
Chemists and physicists are collaborating within a new research group at the University of Würzburg. Their stated objective is to enable the manufacture of new materials with customized properties. The German Research Foundation (DFG) is funding the project.

Is this what the energy source of the future will look like? Specially synthesized molecules split water into its components, hydrogen and oxygen, with the help of sunlight. The plan is for this process, which occurs in nature as “photosynthesis”, to be replicated in the laboratory to free the world from its dependency on fossil fuels. This artificial photosynthesis should supply mankind with a virtually inexhaustible and clean energy carrier.

Unfortunately, the dream of artificial photosynthesis as an energy supplier on a grand scale is still a long way off becoming a reality. Scientists have yet to acquire the necessary knowledge concerning the fundamental processes inside potential hydrogen producers. However, a new research group at the University of Würzburg is about to start work on this, bringing together scientists from various branches of physics and chemistry. Its spokesman is Professor Tobias Brixner, Chairman of the Department of Physical Chemistry I. The German Research Foundation (DFG) will be providing around EUR 2.3 million in funding for the project over the next three years.

New materials with specific properties

Molecular aggregates and their reactions to light will be the main focus of the Würzburg research group. “We will examine the interaction between light and matter with a view to understanding and controlling the dynamic processes and optical phenomena,” says Brixner. It is hoped that their findings will enable the scientists to customize new materials with specific properties.

Of course, facilitating the breakthrough of artificial photosynthesis will be just one of the goals with these new materials. Extremely energy-efficient light sources, tap-proof encryption technology, super-fast quantum computers, effective photovoltaic elements, nano-components that can repair themselves: these will all be conceivable once the fundamental processes in the molecular aggregates have been clarified and understood.

Research on molecular aggregates

Molecular aggregates: chemists understand these as the smallest building blocks in macroscopic systems such as liquids, solutions, or crystals. Inside these, molecules are arranged in specific structures with strong or weak links binding them. The diverse interactions between the individual blocks determine what happens inside the aggregates when light falls on them.

“What makes molecular aggregates so special and therefore appealing compared, for example, to inorganic solids is the fact that the properties of these molecular ‘basic building blocks’ can be varied deliberately,” explains Brixner. Changes at the microscopic level result in changes on a macroscopic scale as well. Though, the exact processes are still unknown. “In the past, although scientists went to great lengths examining countless molecules optically, there was generally no systematic variation of aggregates,” says Brixner. In many cases, therefore, current knowledge is inadequate for a prediction of the properties of a complex system based on the properties of the underlying molecular building blocks.

Better understanding of internal processes

This is where the work of the Würzburg research group will begin: the group will spend the next three years closely studying the interactions between light and matter in molecular aggregates. “Once we are familiar with the fundamental rules of the interactions, it should be possible to produce a new generation of materials that exceed those we have today,” states Brixner.

The Würzburg research group possesses the knowledge and technology required for this research. Its members come from the fields of theoretical, physical, and organic chemistry as well as experimental physics; they have the necessary expertise in all the requisite research methods and in the respective equipment – ranging from spectroscopy to photoconductivity measurement. The bundling of available experimental and theoretical resources will enable “unique cooperative research in the area of light-matter interaction”.

The members of the research group are as follows:

from Physical and Theoretical Chemistry:
• Prof. Dr. Tobias Brixner
• Prof. Dr. Volker Engel
• Prof. Dr. Bernd Engels
from Organic Chemistry:
• Prof. Dr. Christoph Lambert
• Prof. Dr. Frank Würthner
from Experimental Physics:
• Prof. Dr. Vladimir Dyakonov
• PD Dr. Carsten Deibel
• Prof. Dr. Jens Pflaum
as well as the following associated junior researchers:
• Dr. Florian Beuerle
• Dr. Gustavo Fernández
• Dr. Patrick Nürnberger
The German Research Foundation (DFG) has decided to set up a total of six new research groups and one clinical research group. These research consortia should provide scientists with the opportunity to “address current and urgent issues in their fields and to develop new methods for tackling them”, according to a DFG press release. The foundation currently funds 191 research groups.
Contact
Prof. Dr. Tobias Brixner, T: +49 (0)931 31-86330, e-mail: brixner@phys-chemie.uni-wuerzburg.de

Gunnar Bartsch | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Materials Sciences:

nachricht New value added to the ICSD (Inorganic Crystal Structure Database)
27.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>