Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New industry-relevant findings in boron research

28.09.2011
A research team at the University of Bayreuth succeeded in positively identifying alpha-boron as thermodynamically stable phase of boron.

Furthermore, the findings, which are published now in "Scientific Reports", provide a basis for the possible production of single crystals of alpha-boron with the help of high pressure technology on an industrial scale. This opens up new prospects for industrial applications, especially for the semiconductor industry and the generation of solar power.


Alpha-boron crystals with a length of about 2 mm under an optical microscope. A number of physical properties of alpha-boron are of particular interest for technical applications: it is a wide band gap semiconductor distinguished by its high hardness, heat resistance and comparatively low density. Image: Prof. Dr. Natalia Dubrovinskaia

Discovered in 1808, boron is one of the most enigmatic chemical elements. Because of its extremely high reactivity, it does not exist in pure form in nature. Pure boron crystals can be produced artificially under high pressures and temperatures. Depending on the pressure and temperature conditions, this process results in synthesis of three different types of boron crystals which are called "phases" in research. They differ from each other in their structures, which are of varying complexity, and are called alpha-, beta- or gamma-boron.

Researchers have long disagreed on a question that is highly relevant both for basic research and technical applications: what is the most stable phase of boron? A team led by Prof. Dr. Natalia Dubrovinskaia, Heisenberg professor for Materials Physics and Technology at the University of Bayreuth, and Prof. Dr. Leonid Dubrovinsky at the Bavarian Geoinstitute (BGI) was able to clearly settle this dispute in favour of alpha-boron. What is more, their joint research efforts in Bayreuth and Potsdam (the GeoForschungsZentrum Potsdam is also involved in the boron project) found out that modern high pressure technologies could presumably be adapted to produce alpha-boron on an industrial scale. The researchers from Bayreuth and Potsdam report on their findings in the latest issue of "Scientific Reports".

A series of various boron crystals was synthesized in the high-pressure labs of the BGI, a research centre at the University of Bayreuth, at temperatures of up to 2300 degrees Kelvin (ca. 2030 degrees Celsius) and pressures of up to 15 gigapascals. A favourite comparison demonstrates how extraordinary these artificially produced conditions are: if one could balance the Eiffel Tower on a fingertip, this would correspond to a pressure of 10 gigapascals. Alpha-boron crystals were synthesized at pressures between 4 and 11 gigapascals in combination with temperatures between 1400 and 1900 degrees Kelvin. The data gained from experiments led to the conclusion that alpha-boron – and not crystals of beta-boron, as many assumed – is the most stable phase of boron.

At the same time the researchers succeeded in characterizing the alpha-boron crystals synthesized in the lab more precisely. A number of properties of particular interest for technical applications were either confirmed or for the first time reliably proven through highly precise measurements: alpha-boron is a wide band gap semiconductor distinguished by its high hardness, heat resistance and comparatively low density.

What is especially interesting for research and industrial applications is single crystals of boron. A single crystal solid is a material in which the crystal structure of the entire sample is continuous and unbroken to the edges of the sample, with no grain boundaries. The absence of the defects associated with grain boundaries can give the single crystals unique properties, particularly mechanical, optical and electrical. These properties, in addition to making them precious in some gems, are industrially used in technological applications, especially in optics and electronics. Until now, in-depth research on the application potential of alpha-boron had mainly been hampered by the fact that there was no reliable process to synthesize single crystals of alpha-boron. This impediment has now been eliminated. The paper published in "Scientific Reports" contains a phase diagram showing stability fields of boron phases with different properties and structures. Therefore, recommendations are now available for the targeted production of boron crystals, including single crystals of alpha-boron.

The research results produced at the University of Bayreuth open up the possibility of using boron crystals for innovative applications in various branches of technology. Alpha-boron, which can probably be produced on an industrial scale, is a highly attractive material especially for the semiconductor industry. In addition, it may be suitable for the construction of solar panels that convert sunlight into electrical energy with a high level of efficiency.

Publication:

Gleb Parakhonskiy, Natalia Dubrovinskaia, Elena Bykova,
Richard Wirth, Leonid Dubrovinsky,
Experimental pressure-temperature phase diagram of boron:
resolving the long-standing enigma,
in: Scientific Reports (2011), 1 : 96,
DOI: 10.1038/srep00096
Published 19 September 2011, see
http://www.nature.com/srep/2011/110919/srep00096/full/srep00096.html
Contact for further information:
Prof. Dr. Natalia Dubrovinskaia
University of Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 55-3880
E-Mail: natalia.dubrovinskaia@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Further information:
http://www.uni-bayreuth.de

More articles from Materials Sciences:

nachricht Manchester scientists tie the tightest knot ever achieved
13.01.2017 | University of Manchester

nachricht CWRU directly measures how perovskite solar films efficiently convert light to power
12.01.2017 | Case Western Reserve University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>