Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glass meets Flexibility

24.04.2014

Dr. M. Junghaehnel from the Fraunhofer Institute for Electron Beam and Plasma Technology FEP (Fraunhofer FEP) will give an overview of advances in the area of flexible glass coatings and collaborative findings with Corning Incorporated (NYSE: GLW) at the SVC TECHCON 2014 being held at the Hyatt Regency in Chicago, May 3-8, 2014.

Flexible glass, such as ultra-slim Corning® Willow® Glass, produced at thicknesses of 100 micron and 200 micron has the ability to bend, while maintaining perfect barrier properties, superior surface quality, greater transparency, and high temperature processing, outperforming polymers. At the same time it has the potential to be used in roll-to-roll large area processing. These qualities make flexible glass an outstanding material for displays, touch panels, thin-film batteries and Photovoltaic (PV) products. According to Frost & Sullivan’s report »Innovations in Encapsulation Technologies for Printed Electronics (Technical Insights), D513-TI«, flexible glass poses tough competitions to polymer-based solutions.


Corning® Willow™ Glass Bend

© Corning Incorporated

Fraunhofer FEP aims to advance processing and handling of flexible glass. Fraunhofer FEP and Corning are working together to promote functionality of a glass surface using PVD deposition methods to facilitate device processing; remaining aware of the thermal and size parameters of the coated substrate, and the effects they could have on device fabrication.

During her presentation, Dr. Junghaehnel will focus on optimization of the magnetron sputtering process for low-stress deposition and emphasize the impact of selected process parameters during high-deposition sputtering of selected materials on the stress of a substrate. These results have been compared with investigations on flexible PET substrates. The determined parameters will be a starting point to improve handling and performance of flexible glass in existing thin-film coating equipment. Fraunhofer FEP’s thin-film coating equipment is suitable for substrates up to 200 mm in width and will be developed for roll-to-roll, high-rate deposition coating of flexible glass.

About Fraunhofer FEP

Fraunhofer FEP (www.fep.fraunhofer.de) is one of 67 institutes of the Fraunhofer-Gesellschaft, Europe’s largest applied research organization. For more than 20 years we have been active in vacuum coating technology, electron beam surface modification processes, and electron beam source development. In these core areas we work on enhancing technologies, processes and key components. With our coatings we refine products in the area of electronics, sensor, optics, mechanical engineering, packaging, energy, environment, biomedical engineering, architecture, preservation and agriculture.

About Corning Incorporated

Corning Incorporated (www.corning.com) is the world leader in specialty glass and ceramics. Drawing on more than 160 years of materials science and process engineering knowledge, Corning creates and makes keystone components that enable high-technology systems for consumer electronics, mobile emissions control, telecommunications and life sciences. Our products include glass substrates for LCD televisions, computer monitors and laptops; ceramic substrates and filters for mobile emission control systems; optical fiber, cable, hardware & equipment for telecommunications networks; optical biosensors for drug discovery; and other advanced optics and specialty glass solutions for a number of industries including semiconductor, aerospace, defense, astronomy, and metrology.

Media Relations Contact Fraunhofer FEP:
Annett Arnold, M. Sc. | Phone +49 351 2586-452 | annett.arnold@fep.fraunhofer.de

Media Relations Contact Corning:
John O‘Hare | Phone +1 607 974-7488 | ohareja@corning.com

Investor Relations Contact Corning:
Ann H.S. Nicholson | Phone +1 607 974-6716 | nicholsoas@corning.com

Scientific contact:
Dr. Manuela Junghähnel | Phone +49 351 2586-128 l manuela.junghaehnel@fep.fraunhofer.de

Weitere Informationen:

http://www.fep.fraunhofer.de
http://www.corning.com

Annett Arnold | Fraunhofer-Institut

Further reports about: FEP Flexibility LCD agriculture coating glass materials processing substrates thin-film

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>