Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glass meets Flexibility

24.04.2014

Dr. M. Junghaehnel from the Fraunhofer Institute for Electron Beam and Plasma Technology FEP (Fraunhofer FEP) will give an overview of advances in the area of flexible glass coatings and collaborative findings with Corning Incorporated (NYSE: GLW) at the SVC TECHCON 2014 being held at the Hyatt Regency in Chicago, May 3-8, 2014.

Flexible glass, such as ultra-slim Corning® Willow® Glass, produced at thicknesses of 100 micron and 200 micron has the ability to bend, while maintaining perfect barrier properties, superior surface quality, greater transparency, and high temperature processing, outperforming polymers. At the same time it has the potential to be used in roll-to-roll large area processing. These qualities make flexible glass an outstanding material for displays, touch panels, thin-film batteries and Photovoltaic (PV) products. According to Frost & Sullivan’s report »Innovations in Encapsulation Technologies for Printed Electronics (Technical Insights), D513-TI«, flexible glass poses tough competitions to polymer-based solutions.


Corning® Willow™ Glass Bend

© Corning Incorporated

Fraunhofer FEP aims to advance processing and handling of flexible glass. Fraunhofer FEP and Corning are working together to promote functionality of a glass surface using PVD deposition methods to facilitate device processing; remaining aware of the thermal and size parameters of the coated substrate, and the effects they could have on device fabrication.

During her presentation, Dr. Junghaehnel will focus on optimization of the magnetron sputtering process for low-stress deposition and emphasize the impact of selected process parameters during high-deposition sputtering of selected materials on the stress of a substrate. These results have been compared with investigations on flexible PET substrates. The determined parameters will be a starting point to improve handling and performance of flexible glass in existing thin-film coating equipment. Fraunhofer FEP’s thin-film coating equipment is suitable for substrates up to 200 mm in width and will be developed for roll-to-roll, high-rate deposition coating of flexible glass.

About Fraunhofer FEP

Fraunhofer FEP (www.fep.fraunhofer.de) is one of 67 institutes of the Fraunhofer-Gesellschaft, Europe’s largest applied research organization. For more than 20 years we have been active in vacuum coating technology, electron beam surface modification processes, and electron beam source development. In these core areas we work on enhancing technologies, processes and key components. With our coatings we refine products in the area of electronics, sensor, optics, mechanical engineering, packaging, energy, environment, biomedical engineering, architecture, preservation and agriculture.

About Corning Incorporated

Corning Incorporated (www.corning.com) is the world leader in specialty glass and ceramics. Drawing on more than 160 years of materials science and process engineering knowledge, Corning creates and makes keystone components that enable high-technology systems for consumer electronics, mobile emissions control, telecommunications and life sciences. Our products include glass substrates for LCD televisions, computer monitors and laptops; ceramic substrates and filters for mobile emission control systems; optical fiber, cable, hardware & equipment for telecommunications networks; optical biosensors for drug discovery; and other advanced optics and specialty glass solutions for a number of industries including semiconductor, aerospace, defense, astronomy, and metrology.

Media Relations Contact Fraunhofer FEP:
Annett Arnold, M. Sc. | Phone +49 351 2586-452 | annett.arnold@fep.fraunhofer.de

Media Relations Contact Corning:
John O‘Hare | Phone +1 607 974-7488 | ohareja@corning.com

Investor Relations Contact Corning:
Ann H.S. Nicholson | Phone +1 607 974-6716 | nicholsoas@corning.com

Scientific contact:
Dr. Manuela Junghähnel | Phone +49 351 2586-128 l manuela.junghaehnel@fep.fraunhofer.de

Weitere Informationen:

http://www.fep.fraunhofer.de
http://www.corning.com

Annett Arnold | Fraunhofer-Institut

Further reports about: FEP Flexibility LCD agriculture coating glass materials processing substrates thin-film

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>