Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant Piezoelectric Effect to Improve MEMS Devices

02.12.2011
Researchers in the Department of Materials Science and Engineering and the Materials Research Institute at Penn State are part of a multidisciplinary team of researchers from universities and national laboratories across the U.S. who have fabricated piezoelectric thin films with record-setting properties.

These engineered films have great potential for energy harvesting applications, as well as in micro-electro-mechanical-systems (MEMS), micro actuators, and sensors for a variety of miniaturized systems, such as ultrasound imaging, microfluidics, and mechanical sensing.

Piezoelectric materials can transform electrical energy into mechanical energy and vice versa. Most MEMS utilize silicon, the standard material for semiconductor electronics, as the substrate. Integrating piezoelectric thin films onto silicon-based MEMS devices with dimensions from micrometers to a few millimeters in size will add an active component that can take advantage of motion, such as a footstep or a vibrating motor, to generate electric current, or use a small applied voltage to create micron level motion, such as in focusing a digital camera.

Previously, the best piezoelectric MEMS devices were made with layers of silicon and lead zirconium titanate (PZT) films. Recently, a team led by Chang-Beom Eom of University of Wisconsin-Madison synthesized a lead magnesium niobate-lead titanate (PMN-PT) thin film integrated on a silicon substrate.

The Penn State team, led by Susan Trolier-McKinstry, professor of ceramic science and engineering, and including research associate Srowthi Bharadwaja, PhD, measured the electrical and piezoelectric performance of the thin films and compared the PMN-PT films against the reported values of other micromachined actuator materials to show the potential of PMN-PT for actuator and energy harvesting applications.

In a recent article in Science, the team reported the highest values of piezoelectric properties for any piezoelectric thin film to-date, and a two-fold higher figure of merit than the best reported PZT films for energy harvesting applications. This increase in the effective piezoelectric activity in a thin film will result in a dramatic improvement in performance. For example, energy harvesting using such thin films will provide local power sources for wireless sensor nodes for bridges, aircraft, and potentially for human-body sensors.

Along with the researchers from Penn State and UW-Madison, the participating institutions included the National Institute of Standards and Technology (NIST), University of Michigan, University of California, Berkeley, Cornell University, and Argonne National Laboratory. The paper, titled “Giant Piezoelectricity on Si for Hyperactive MEMS,” appeared in the Nov. 18 issue of Science. Work at Penn State was supported by a National Security Science and Engineering Faculty Fellowship. Other support was provided by the National Science Foundation, the Department of Energy, the Air Force Office for Scientific Research, and a David Lucile Packard Fellowship.

For more information, contact Susan Trolier-McKinstry at 814 863-8348 or stmckinstry@psu.edu. Visit the Materials Research Institute and its new home in the Millennium Science Complex at www.mri.psu.edu.

Susan Trolier-McKinstry | Newswise Science News
Further information:
http://www.psu.edu

More articles from Materials Sciences:

nachricht Robust and functional – surface finishing by suspension spraying
19.09.2017 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Graphene and other carbon nanomaterials can replace scarce metals
19.09.2017 | Chalmers University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>