Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant Piezoelectric Effect to Improve MEMS Devices

02.12.2011
Researchers in the Department of Materials Science and Engineering and the Materials Research Institute at Penn State are part of a multidisciplinary team of researchers from universities and national laboratories across the U.S. who have fabricated piezoelectric thin films with record-setting properties.

These engineered films have great potential for energy harvesting applications, as well as in micro-electro-mechanical-systems (MEMS), micro actuators, and sensors for a variety of miniaturized systems, such as ultrasound imaging, microfluidics, and mechanical sensing.

Piezoelectric materials can transform electrical energy into mechanical energy and vice versa. Most MEMS utilize silicon, the standard material for semiconductor electronics, as the substrate. Integrating piezoelectric thin films onto silicon-based MEMS devices with dimensions from micrometers to a few millimeters in size will add an active component that can take advantage of motion, such as a footstep or a vibrating motor, to generate electric current, or use a small applied voltage to create micron level motion, such as in focusing a digital camera.

Previously, the best piezoelectric MEMS devices were made with layers of silicon and lead zirconium titanate (PZT) films. Recently, a team led by Chang-Beom Eom of University of Wisconsin-Madison synthesized a lead magnesium niobate-lead titanate (PMN-PT) thin film integrated on a silicon substrate.

The Penn State team, led by Susan Trolier-McKinstry, professor of ceramic science and engineering, and including research associate Srowthi Bharadwaja, PhD, measured the electrical and piezoelectric performance of the thin films and compared the PMN-PT films against the reported values of other micromachined actuator materials to show the potential of PMN-PT for actuator and energy harvesting applications.

In a recent article in Science, the team reported the highest values of piezoelectric properties for any piezoelectric thin film to-date, and a two-fold higher figure of merit than the best reported PZT films for energy harvesting applications. This increase in the effective piezoelectric activity in a thin film will result in a dramatic improvement in performance. For example, energy harvesting using such thin films will provide local power sources for wireless sensor nodes for bridges, aircraft, and potentially for human-body sensors.

Along with the researchers from Penn State and UW-Madison, the participating institutions included the National Institute of Standards and Technology (NIST), University of Michigan, University of California, Berkeley, Cornell University, and Argonne National Laboratory. The paper, titled “Giant Piezoelectricity on Si for Hyperactive MEMS,” appeared in the Nov. 18 issue of Science. Work at Penn State was supported by a National Security Science and Engineering Faculty Fellowship. Other support was provided by the National Science Foundation, the Department of Energy, the Air Force Office for Scientific Research, and a David Lucile Packard Fellowship.

For more information, contact Susan Trolier-McKinstry at 814 863-8348 or stmckinstry@psu.edu. Visit the Materials Research Institute and its new home in the Millennium Science Complex at www.mri.psu.edu.

Susan Trolier-McKinstry | Newswise Science News
Further information:
http://www.psu.edu

More articles from Materials Sciences:

nachricht Melting solid below the freezing point
23.01.2017 | Carnegie Institution for Science

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>