Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Giant Piezoelectric Effect to Improve MEMS Devices

Researchers in the Department of Materials Science and Engineering and the Materials Research Institute at Penn State are part of a multidisciplinary team of researchers from universities and national laboratories across the U.S. who have fabricated piezoelectric thin films with record-setting properties.

These engineered films have great potential for energy harvesting applications, as well as in micro-electro-mechanical-systems (MEMS), micro actuators, and sensors for a variety of miniaturized systems, such as ultrasound imaging, microfluidics, and mechanical sensing.

Piezoelectric materials can transform electrical energy into mechanical energy and vice versa. Most MEMS utilize silicon, the standard material for semiconductor electronics, as the substrate. Integrating piezoelectric thin films onto silicon-based MEMS devices with dimensions from micrometers to a few millimeters in size will add an active component that can take advantage of motion, such as a footstep or a vibrating motor, to generate electric current, or use a small applied voltage to create micron level motion, such as in focusing a digital camera.

Previously, the best piezoelectric MEMS devices were made with layers of silicon and lead zirconium titanate (PZT) films. Recently, a team led by Chang-Beom Eom of University of Wisconsin-Madison synthesized a lead magnesium niobate-lead titanate (PMN-PT) thin film integrated on a silicon substrate.

The Penn State team, led by Susan Trolier-McKinstry, professor of ceramic science and engineering, and including research associate Srowthi Bharadwaja, PhD, measured the electrical and piezoelectric performance of the thin films and compared the PMN-PT films against the reported values of other micromachined actuator materials to show the potential of PMN-PT for actuator and energy harvesting applications.

In a recent article in Science, the team reported the highest values of piezoelectric properties for any piezoelectric thin film to-date, and a two-fold higher figure of merit than the best reported PZT films for energy harvesting applications. This increase in the effective piezoelectric activity in a thin film will result in a dramatic improvement in performance. For example, energy harvesting using such thin films will provide local power sources for wireless sensor nodes for bridges, aircraft, and potentially for human-body sensors.

Along with the researchers from Penn State and UW-Madison, the participating institutions included the National Institute of Standards and Technology (NIST), University of Michigan, University of California, Berkeley, Cornell University, and Argonne National Laboratory. The paper, titled “Giant Piezoelectricity on Si for Hyperactive MEMS,” appeared in the Nov. 18 issue of Science. Work at Penn State was supported by a National Security Science and Engineering Faculty Fellowship. Other support was provided by the National Science Foundation, the Department of Energy, the Air Force Office for Scientific Research, and a David Lucile Packard Fellowship.

For more information, contact Susan Trolier-McKinstry at 814 863-8348 or Visit the Materials Research Institute and its new home in the Millennium Science Complex at

Susan Trolier-McKinstry | Newswise Science News
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>