Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant Piezoelectric Effect to Improve MEMS Devices

02.12.2011
Researchers in the Department of Materials Science and Engineering and the Materials Research Institute at Penn State are part of a multidisciplinary team of researchers from universities and national laboratories across the U.S. who have fabricated piezoelectric thin films with record-setting properties.

These engineered films have great potential for energy harvesting applications, as well as in micro-electro-mechanical-systems (MEMS), micro actuators, and sensors for a variety of miniaturized systems, such as ultrasound imaging, microfluidics, and mechanical sensing.

Piezoelectric materials can transform electrical energy into mechanical energy and vice versa. Most MEMS utilize silicon, the standard material for semiconductor electronics, as the substrate. Integrating piezoelectric thin films onto silicon-based MEMS devices with dimensions from micrometers to a few millimeters in size will add an active component that can take advantage of motion, such as a footstep or a vibrating motor, to generate electric current, or use a small applied voltage to create micron level motion, such as in focusing a digital camera.

Previously, the best piezoelectric MEMS devices were made with layers of silicon and lead zirconium titanate (PZT) films. Recently, a team led by Chang-Beom Eom of University of Wisconsin-Madison synthesized a lead magnesium niobate-lead titanate (PMN-PT) thin film integrated on a silicon substrate.

The Penn State team, led by Susan Trolier-McKinstry, professor of ceramic science and engineering, and including research associate Srowthi Bharadwaja, PhD, measured the electrical and piezoelectric performance of the thin films and compared the PMN-PT films against the reported values of other micromachined actuator materials to show the potential of PMN-PT for actuator and energy harvesting applications.

In a recent article in Science, the team reported the highest values of piezoelectric properties for any piezoelectric thin film to-date, and a two-fold higher figure of merit than the best reported PZT films for energy harvesting applications. This increase in the effective piezoelectric activity in a thin film will result in a dramatic improvement in performance. For example, energy harvesting using such thin films will provide local power sources for wireless sensor nodes for bridges, aircraft, and potentially for human-body sensors.

Along with the researchers from Penn State and UW-Madison, the participating institutions included the National Institute of Standards and Technology (NIST), University of Michigan, University of California, Berkeley, Cornell University, and Argonne National Laboratory. The paper, titled “Giant Piezoelectricity on Si for Hyperactive MEMS,” appeared in the Nov. 18 issue of Science. Work at Penn State was supported by a National Security Science and Engineering Faculty Fellowship. Other support was provided by the National Science Foundation, the Department of Energy, the Air Force Office for Scientific Research, and a David Lucile Packard Fellowship.

For more information, contact Susan Trolier-McKinstry at 814 863-8348 or stmckinstry@psu.edu. Visit the Materials Research Institute and its new home in the Millennium Science Complex at www.mri.psu.edu.

Susan Trolier-McKinstry | Newswise Science News
Further information:
http://www.psu.edu

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>