Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All Foamed Up

07.02.2012
Synthesis of macroporous polystyrene through polymerization of foamed emulsions

Packaging, insulation, and impact protection are examples of commercial uses of polymer foams. Depending on the intended application, the properties required of these foams can differ greatly.


In the journal Angewandte Chemie, a team of German, Irish, and French researchers led by Cosima Stubenrauch at the University of Stuttgart has now introduced a new method for the controlled production of structured foams. Their technique is based on the polymerization of foamed emulsions of oil in water.

Not all foams are equal: a kitchen sponge, for example, is not the same as a piece of Styrofoam packaging. Different applications make different demands on a foam, which has led to efforts to control the properties of foams in a targeted fashion. In addition to a foam’s chemical composition, its structure also plays an important role. The property profile of a foam depends on the number and size of the pores, whether the pores are closed off or connected, and the thickness of the polymer supports between the pores.

“The high complexity of conventional production processes, which generate foams from polymer melts and blowing agents, makes control over the morphology and properties of the product a big challenge,” explains Stubenrauch.

An alternative approach involves the use of microscopically small templates to force the foam into the desired structure. For example, tiny droplets of water can be finely dispersed (emulsified) in a solution of monomer, then removed after the polymerization is complete. Another process uses particles to stabilize air bubbles in the reaction mixture.

Stubenrauch’s team has now introduced a new concept for the synthesis of macroporous polystyrene foams: the polymerization of foamed oil-in-water emulsions. Styrene (the “oil phase”) is first emulsified in an aqueous phase. Afterward, the emulsion is stabilized with an anionic surfactant and foamed with nitrogen. This forms bubbles surrounded by tightly packed drops of emulsion. In the third step, the polymerization is initiated by irriadiation with UV light. The drops of emulsion dissolve away, while the structure of the foam—that of the template—is maintained.

The resulting polymer foams contain pores that are partially interconnected through “windows”. “While the high density of the polymer and the strong bonds provide good mechanical stability, the presence of the windows allows air, fluids, or other materials to flow through the foam,” says Stubenrauch. “Control over these properties is desirable for many applications, such as supports, filter agents, or biologically inspired scaffolding. This production technique is simple and versatile and represents a highly promising alternative to other template-based synthetic methods.”

About the Author
Dr. Cosima Stubenrauch is Full Professor and head of the chair “Physical Chemistry of Condensed Matter” at the University of Stuttgart, Germany. She has been working on colloids and interfaces for 18 years. She is also docent at the KTH Royal Institute of Technology, Stockholm, Sweden and the recipient of 11 awards among which the Nernst–Haber–Bodenstein Award 2007.
Author: Cosima Stubenrauch, Universität Stuttgart (Germany), http://www.ipc.uni-stuttgart.de/AKStubenrauch/group/staff/stubenrauch/
Title: Synthesis of Macroporous Polystyrene by the Polymerization of Foamed Emulsions

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201107806

Cosima Stubenrauch | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>