Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmentally friendly corrosion protection shows its effect by simple spraying

05.04.2012
Materials researchers from Saarbruecken developed a new composite material, which prevents corrosion of metals even under extreme conditions in an environmentally friendly way.

It can be used, wherever metals are exposed to strong weather conditions, aggressive gases, salty media, extensive wear and tear or high pressure. From 23 to 27 April 2012, researchers of INM — Leibniz Institute for New Materials present their results at the leading trade fair "Research and Technology" in Hall 2 at the stand C54.


corrosion protection
Foto: Uwe Bellhäuser

"This patented composite shows its effect by simple spraying", explains Carsten Becker-Willinger, head of the program division "Nanomere". "What makes this coating so special is its structuring: The protective particles arrange themselves like roof-tiles. Similar to a wall, several layers of particles arrange themselves in a staggered pattern on top of each other, resulting in a self-organized, highly structured barrier", says the expert for chemical nanotechnology.

The protective coating is only a few millimeters thick and prevents the penetration of gases and electrolytes. It protects from corrosion caused by aggressive aqueous solutions, such as salty solutions (e.g. splash water containing road salt or sea water) or aqueous acids (e.g. acid rain). The protective coating is also an effective barrier against corrosive gases or under pressure.

After thermal curing, the composite adheres on metallic substrate, it is abrasion- and impact-resistant. For this purpose, it also withstands a highly mechanical load: The coating passes the ball-drop test with a 1.5 kg semi-spherical steel ball, which is dropped from a height of 1 metre without causing parts to chip off or the coating to crack. Only light deformation is shown. Thus, the new material can also be used with sand or mineral dust without wear and tear.

The composite can be deposited by spraying or with other wet-chemical processes and cured at temperatures from 150 to 200°C. It is suitable for steel, metal alloys or copper. Panels, tubes, cogwheels, tools or engine parts in any shape can be coated. The special mixture consists of a solvent, a binder and nanoscale platelet-like particles, but no chrome VI or other heavy metals.

Contact:
Dr. Carsten Becker-Willinger
Program Division „Nanomere“
INM – Leibniz-Institut für Neue Materialien
Phone: +49 681 9300 196
Email: nanomere@inm-gmbh.de
INM, situated in Saarbruecken/Germany, is an internationally leading research centre for innovative materials. Specialised in the three research fields of Chemical Nanotechnology, Interface Materials and Materials in Biology, the institute provides research and development from molecule to pilot production delivered by a highly skilled team of chemists, physicists, biologists, materials and engineering scientists. It cooperates with national and international institutes and develops materials with tailor-made properties for companies throughout the world. INM is an institute of the Scientific Association Gottfried Wilhelm Leibniz and employs around 190 collaborators.

Dr. Carola Jung | idw
Further information:
http://www.inm-gmbh.de/
http://www.wgl.de/

More articles from Materials Sciences:

nachricht Nagoya physicists resolve long-standing mystery of structure-less transition
21.08.2017 | Nagoya University

nachricht Scientists from the MSU studied new liquid-crystalline photochrom
21.08.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>