Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineered materials: Custom-made magnets

24.05.2012
A novel approach to designing artificial materials could enable magnetic devices with a wider range of properties than those now available. An international team of researchers have now extended the properties and potential uses of metamaterials by using not one but two very different classes of nanostructures, or metamolecules.

The properties of a substance are largely dependent on its constituent atoms and the way that these atoms interact with each other. The finite number of atom types, however, imposes a limit on the range of properties that a conventional material can have.


An array of metamolecules comprising silicon spheres and copper split-rings can be used to control magnetization waves.
Copyright : © 2012 American Chemical Society

In contrast, a new class of engineered materials called metamaterials have no such limitation. Metamaterials are typically composed of an array of nanostructures that can interact with electromagnetic waves in much the same way as atoms. In addition, the optical properties of these metamaterials can be tuned by altering the size and shape of nanostructures.

An international team of researchers led by Boris Luk'yanchuk at the A*STAR Data Storage Institute have now extended the properties and potential uses of metamaterials by using not one but two very different classes of nanostructures, or metamolecules.

Luk'yanchuk and the team mathematically modelled a two-dimensional array of metamolecules comprising a silicon sphere next to a partially incomplete copper ring. They studied the influence of both the sphere and the split ring on the magnetic component of an incident electromagnetic wave — a property known as magnetization.

"When the two structures were more than one micrometer apart, they both acted to increase the local magnetic field," says Luk’yanchuk. However, they started to interact when moved closer together, and the researchers observed that the magnetization of the split ring decreases and even becomes negative for separations smaller than 0.5 micrometers.

This situation is somewhat analogous to the magnetic ordering in ‘natural’ materials. When all the atoms contribute in a positive way to a material’s magnetic properties, the material becomes a ferromagnet. However, when alternating regions of the material have opposite magnetization, the material is said to be antiferromagnetic.

"We demonstrate that our hybrid lattices of metamolecule exhibit distance-dependent magnetic interaction, opening new ways for manipulating artificial antiferromagnetism with low-loss materials," explains Luk'yanchuk.

Although the analogy between metamaterials and magnetic materials is not a perfect one, most metamaterials are said to be ferromagnet-like. The design proposed by Luk'yanchuk and the team closely mimics antiferromagnetic ordering, and this opens an opportunity for researchers to study antiferromagnetic phenomena in metamaterials. One notable example is giant magnetoresistance, a phenomenon that is at the heart of modern electronic memories.

Luk'yanchuk affirms that a metamaterial analog would offer exciting research prospects. "We believe that our work has the potential to make a strong impact towards the development of on-chip integrated solutions for reconfigurable and optically-controlled metamaterials."

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute.

References:

Miroshnichenko, A. E., Luk'yanchuk, B., Maier, S. A. & Kivshar, Y. S. Optically induced interaction of magnetic moments in hybrid metamaterials. ACS Nano 6, 837–842 (2012).

Lee Swee Heng | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>