Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineered materials: Custom-made magnets

24.05.2012
A novel approach to designing artificial materials could enable magnetic devices with a wider range of properties than those now available. An international team of researchers have now extended the properties and potential uses of metamaterials by using not one but two very different classes of nanostructures, or metamolecules.

The properties of a substance are largely dependent on its constituent atoms and the way that these atoms interact with each other. The finite number of atom types, however, imposes a limit on the range of properties that a conventional material can have.


An array of metamolecules comprising silicon spheres and copper split-rings can be used to control magnetization waves.
Copyright : © 2012 American Chemical Society

In contrast, a new class of engineered materials called metamaterials have no such limitation. Metamaterials are typically composed of an array of nanostructures that can interact with electromagnetic waves in much the same way as atoms. In addition, the optical properties of these metamaterials can be tuned by altering the size and shape of nanostructures.

An international team of researchers led by Boris Luk'yanchuk at the A*STAR Data Storage Institute have now extended the properties and potential uses of metamaterials by using not one but two very different classes of nanostructures, or metamolecules.

Luk'yanchuk and the team mathematically modelled a two-dimensional array of metamolecules comprising a silicon sphere next to a partially incomplete copper ring. They studied the influence of both the sphere and the split ring on the magnetic component of an incident electromagnetic wave — a property known as magnetization.

"When the two structures were more than one micrometer apart, they both acted to increase the local magnetic field," says Luk’yanchuk. However, they started to interact when moved closer together, and the researchers observed that the magnetization of the split ring decreases and even becomes negative for separations smaller than 0.5 micrometers.

This situation is somewhat analogous to the magnetic ordering in ‘natural’ materials. When all the atoms contribute in a positive way to a material’s magnetic properties, the material becomes a ferromagnet. However, when alternating regions of the material have opposite magnetization, the material is said to be antiferromagnetic.

"We demonstrate that our hybrid lattices of metamolecule exhibit distance-dependent magnetic interaction, opening new ways for manipulating artificial antiferromagnetism with low-loss materials," explains Luk'yanchuk.

Although the analogy between metamaterials and magnetic materials is not a perfect one, most metamaterials are said to be ferromagnet-like. The design proposed by Luk'yanchuk and the team closely mimics antiferromagnetic ordering, and this opens an opportunity for researchers to study antiferromagnetic phenomena in metamaterials. One notable example is giant magnetoresistance, a phenomenon that is at the heart of modern electronic memories.

Luk'yanchuk affirms that a metamaterial analog would offer exciting research prospects. "We believe that our work has the potential to make a strong impact towards the development of on-chip integrated solutions for reconfigurable and optically-controlled metamaterials."

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute.

References:

Miroshnichenko, A. E., Luk'yanchuk, B., Maier, S. A. & Kivshar, Y. S. Optically induced interaction of magnetic moments in hybrid metamaterials. ACS Nano 6, 837–842 (2012).

Lee Swee Heng | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>