Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emulating -- and surpassing -- nature

14.10.2011
Design rules will enable scientists to use DNA to build nanomaterials with desired properties

Nature is a master builder. Using a bottom-up approach, nature takes tiny atoms and, through chemical bonding, makes crystalline materials, like diamonds, silicon and even table salt. In all of them, the properties of the crystals depend upon the type and arrangement of atoms within the crystalline lattice.

Now, a team of Northwestern University scientists has learned how to top nature by building crystalline materials from nanoparticles and DNA, the same material that defines the genetic code for all living organisms.

Using nanoparticles as "atoms" and DNA as "bonds," the scientists have learned how to create crystals with the particles arranged in the same types of atomic lattice configurations as some found in nature, but they also have built completely new structures that have no naturally occurring mineral counterpart.

The basic design rules the Northwestern scientists have established for this approach to nanoparticle assembly promise the possibility of creating a variety of new materials that could be useful in catalysis, electronics, optics, biomedicine and energy generation, storage and conversion technologies.

The new method and design rules for making crystalline materials from nanostructures and DNA will be published Oct. 14 by the journal Science.

"We are building a new periodic table of sorts," said Professor Chad A. Mirkin, who led the research. "Using these new design rules and nanoparticles as 'artificial atoms,' we have developed modes of controlled crystallization that are, in many respects, more powerful than the way nature and chemists make crystalline materials from atoms. By controlling the size, shape, type and location of nanoparticles within a given lattice, we can make completely new materials and arrangements of particles, not just what nature dictates."

Mirkin is the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and professor of medicine, chemical and biological engineering, biomedical engineering and materials science and engineering and director of Northwestern's International Institute for Nanotechnology (IIN).

"Once we have a certain type of lattice," Mirkin said, "the particles can be moved closer together or farther apart by changing the length of the interconnecting DNA, thereby providing near-infinite tunability."

"This work resulted from an interdisciplinary collaboration that coupled synthetic chemistry with theoretical model building," said coauthor George C. Schatz, a world-renowned theoretician and the Charles E. and Emma H. Morrison Professor of Chemistry at Northwestern. "It was the back and forth between synthesis and theory that was crucial to the development of the design rules. Collaboration is a special aspect of research at Northwestern, and it worked very effectively for this project."

In the study, the researchers start with two solutions of nanoparticles coated with single-stranded DNA. They then add DNA strands that bind to these DNA-functionalized particles, which then present a large number of DNA "sticky ends" at a controlled distance from the particle surface; these sticky ends then bind to the sticky ends of adjacent particles, forming a macroscopic arrangement of nanoparticles.

Different crystal structures are achieved by using different combinations of nanoparticles (with varying sizes) and DNA linker strands (with controllable lengths). After a process of mixing and heating, the assembled particles transition from an initially disordered state to one where every particle is precisely located according to a crystal lattice structure. The process is analogous to how ordered atomic crystals are formed.

The researchers report six design rules that can be used to predict the relative stability of different structures for a given set of nanoparticle sizes and DNA lengths. In the paper, they use these rules to prepare 41 different crystal structures with nine distinct crystal symmetries. However, the design rules outline a strategy to independently adjust each of the relevant crystallographic parameters, including particle size (varied from 5 to 60 nanometers), crystal symmetry and lattice parameters (which can range from 20 to 150 nanometers). This means that these 41 crystals are just a small example of the near infinite number of lattices that could be created using different nanoparticles and DNA strands.

Mirkin and his team used gold nanoparticles in their work but note that their method also can be applied to nanoparticles of other chemical compositions. Both the type of nanoparticle assembled and the symmetry of the assembled structure contribute to the properties of a lattice, making this method an ideal means to create materials with predictable and controllable physical properties.

Mirkin believes that, one day soon, software will be created that allows scientists to pick the particle and DNA pairs required to make almost any structure on demand.

The Air Force Office of Scientific Research, the U.S. Department of Energy Office of Basic Energy Sciences and the National Science Foundation supported the research.

The Science paper is titled "Nanoparticle Superlattice Engineering with DNA." In addition to Mirkin and Schatz, other authors are Robert J. Macfarlane, Matthew R. Jones and Nadine Harris, all from Northwestern, and Byeongdu Lee, from Argonne National Laboratory.

A video interview of Chad Mirkin discussing the research is available upon request. Contact Lisa-Joy Zgorski at the National Science Foundation, 703-292-8311 or lisajoy@nsf.gov

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Materials Sciences:

nachricht New gel-like coating beefs up the performance of lithium-sulfur batteries
22.03.2017 | Yale University

nachricht Pulverizing electronic waste is green, clean -- and cold
22.03.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>