Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of New Gigantic Swelling Phenomenon of Layered Crystal Driven by Water

02.05.2013
A research group at the International Center for Materials Nanoarchitectonics (MANA) of NIMS discovered an intriguing phenomenon in which an inorganic layered crystal expanded and contracted by 100 times its original size in a few seconds in an aqueous solution, displaying a behavior similar to a living cell.
A research group headed by Dr. Takayoshi Sasaki (MANA Principal Investigator), Dr. Renzhi Ma (MANA Scientist), and Dr. Fengxia Geng (Postdoctoral Researcher) of the International Center for Materials Nanoarchitectonics (MANA; Director-General: Masakazu Aono), National Institute for Materials Science (President: Sukekatsu Ushioda), discovered an intriguing phenomenon in which an inorganic layered crystal expanded and contracted by 100 times its original size in a few seconds when immersed in an aqueous solution, displaying a behavior similar to a living cell.

It is known that inorganic layered crystals intercalate various types of ions and molecules between their layers to show swelling when immersed in aqueous solutions, but the degree of swelling is normally on the order of several 10%. In some limited examples, swelling of several times has been achieved when a large volume of water was absorbed, as water is a solvent. However, in such cases, the force that acts between the layers is weakened, and the crystals will split into thin fragments under even a weak external force, such as shaking of the solution. For this reason, it has been virtually impossible to maintain a stable swelling exceeding 10 times the original size, and scientific understanding in connection with the swelling reaction of lamellar crystals had been limited.

In this research, the MANA group discovered that inorganic plate-shaped crystals such as lamellar metal oxides expand in an manner similar to an accordion, reaching 100 times their original length in the layer stacking direction in 1-2 seconds, under the action of a diluted aqueous solution of an organic compound having an amino group and a hydroxy group at its two ends. In one surprising finding, although the crystal expanded in a string-like manner, it remained stable and did not break, and it returned to its original state in several seconds when an acid was added. Although the lamellar crystal used in this research has a stacked structure comprising around 3000 layers, this means that a huge volume of water, sufficient to cause swelling of as much as 100 times, was absorbed into and then expelled from the interlayer space almost instantaneously, and in this process, the crystal behaved as a monolith without separation of the layers. This amazing phenomenon implies that the water, which is absorbed between the layers, has a special state, and theoretical calculations suggested that a strong, tough hydrogen bond network of water molecules is developed with the organic compound as the point of origin to stabilize the highly swollen structure.

These research results will contribute to advancing understanding of the synthesis process of 2-dimensional materials (graphene, nanosheets) via delamination of precursory lamellar compounds, which have been a “hot topic” in recent years, and to improving controllability of that process, and thus is expected to open the road to high yield synthesis of high grade nanosheets. This discovery is also expected to shed light on the unique behavior of water when enclosed in confined spaces, which is a key factor in biological phenomena, but is still an area where many questions remain to be answered.

These results were obtained as part of the research topic “Creation of New Nanostructured Materials and Manufacturing Processes for Next-Generation Electronics Using Inorganic Nanosheets” (Research Representative: Takayoshi Sasaki) in the CREST (team-oriented research with aim of achieving strategic goals) research project “Establishment of Innovative Manufacturing Technology Based on Nanotechnology” (Research Supervisor: Yasuhiro Horiike) of the Japan Science and Technology Agency (JST). These results were published in the online edition of the English scientific journal “Nature Communications” at 1:00a.m. March 28, 2013 Japanese time (16:00p.m. March 17 local time).

For more information, contact
Takayoshi Sasaki
International Center for Materials Nanoarchitectonics, NIMS
TEL:+81-29-860-4313
FAX:+81-29-860-4950
E-Mail: sasaki.takayoshi=nims.go.jp

MA Renzhi,
International Center for Materials Nanoarchitectonics. NIMS
TEL:+81-29-860-4124
FAX:+81-29-860-4950
E-Mail: ma.renzhi=nims.go.jp

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously
17.01.2017 | Sonderforschungsbereich 668

nachricht Manchester scientists tie the tightest knot ever achieved
13.01.2017 | University of Manchester

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>