Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of New Gigantic Swelling Phenomenon of Layered Crystal Driven by Water

02.05.2013
A research group at the International Center for Materials Nanoarchitectonics (MANA) of NIMS discovered an intriguing phenomenon in which an inorganic layered crystal expanded and contracted by 100 times its original size in a few seconds in an aqueous solution, displaying a behavior similar to a living cell.
A research group headed by Dr. Takayoshi Sasaki (MANA Principal Investigator), Dr. Renzhi Ma (MANA Scientist), and Dr. Fengxia Geng (Postdoctoral Researcher) of the International Center for Materials Nanoarchitectonics (MANA; Director-General: Masakazu Aono), National Institute for Materials Science (President: Sukekatsu Ushioda), discovered an intriguing phenomenon in which an inorganic layered crystal expanded and contracted by 100 times its original size in a few seconds when immersed in an aqueous solution, displaying a behavior similar to a living cell.

It is known that inorganic layered crystals intercalate various types of ions and molecules between their layers to show swelling when immersed in aqueous solutions, but the degree of swelling is normally on the order of several 10%. In some limited examples, swelling of several times has been achieved when a large volume of water was absorbed, as water is a solvent. However, in such cases, the force that acts between the layers is weakened, and the crystals will split into thin fragments under even a weak external force, such as shaking of the solution. For this reason, it has been virtually impossible to maintain a stable swelling exceeding 10 times the original size, and scientific understanding in connection with the swelling reaction of lamellar crystals had been limited.

In this research, the MANA group discovered that inorganic plate-shaped crystals such as lamellar metal oxides expand in an manner similar to an accordion, reaching 100 times their original length in the layer stacking direction in 1-2 seconds, under the action of a diluted aqueous solution of an organic compound having an amino group and a hydroxy group at its two ends. In one surprising finding, although the crystal expanded in a string-like manner, it remained stable and did not break, and it returned to its original state in several seconds when an acid was added. Although the lamellar crystal used in this research has a stacked structure comprising around 3000 layers, this means that a huge volume of water, sufficient to cause swelling of as much as 100 times, was absorbed into and then expelled from the interlayer space almost instantaneously, and in this process, the crystal behaved as a monolith without separation of the layers. This amazing phenomenon implies that the water, which is absorbed between the layers, has a special state, and theoretical calculations suggested that a strong, tough hydrogen bond network of water molecules is developed with the organic compound as the point of origin to stabilize the highly swollen structure.

These research results will contribute to advancing understanding of the synthesis process of 2-dimensional materials (graphene, nanosheets) via delamination of precursory lamellar compounds, which have been a “hot topic” in recent years, and to improving controllability of that process, and thus is expected to open the road to high yield synthesis of high grade nanosheets. This discovery is also expected to shed light on the unique behavior of water when enclosed in confined spaces, which is a key factor in biological phenomena, but is still an area where many questions remain to be answered.

These results were obtained as part of the research topic “Creation of New Nanostructured Materials and Manufacturing Processes for Next-Generation Electronics Using Inorganic Nanosheets” (Research Representative: Takayoshi Sasaki) in the CREST (team-oriented research with aim of achieving strategic goals) research project “Establishment of Innovative Manufacturing Technology Based on Nanotechnology” (Research Supervisor: Yasuhiro Horiike) of the Japan Science and Technology Agency (JST). These results were published in the online edition of the English scientific journal “Nature Communications” at 1:00a.m. March 28, 2013 Japanese time (16:00p.m. March 17 local time).

For more information, contact
Takayoshi Sasaki
International Center for Materials Nanoarchitectonics, NIMS
TEL:+81-29-860-4313
FAX:+81-29-860-4950
E-Mail: sasaki.takayoshi=nims.go.jp

MA Renzhi,
International Center for Materials Nanoarchitectonics. NIMS
TEL:+81-29-860-4124
FAX:+81-29-860-4950
E-Mail: ma.renzhi=nims.go.jp

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>