Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three-dimensional carbon goes metallic

07.11.2013
New metallic structure may be stable at ambient temperature and pressure with potential applications in science and technology

A theoretical, three-dimensional (3D) form of carbon that is metallic under ambient temperature and pressure has been discovered by an international research team.


Figure courtesy of Qian Wang, Ph.D.

The findings, which may significantly advance carbon science, are published online this week in the Early Edition of the Proceedings of the National Academy of Sciences.

Carbon science is a field of intense research. Not only does carbon form the chemical basis of life, but it has rich chemistry and physics, making it a target of interest to material scientists. From graphite to diamond to Buckminster fullerenes, nanotubes and graphene, carbon can display in a range of structures.

But the search for a stable three-dimensional form of carbon that is metallic under ambient conditions, including temperature and pressure, has remained an ongoing challenge for scientists in the field.

Researchers from Peking University, Virginia Commonwealth University and Shanghai Institute of Technical Physics employed state-of-the-art theoretical methods to show that it is possible to manipulate carbon to form a three-dimensional metallic phase with interlocking hexagons.

“The interlocking of hexagons provides two unique features – hexagonal arrangement introduces metallic character, and the interlocking form with tetrahedral bonding guarantees stability,” said co-lead investigator Puru Jena, Ph.D., distinguished professor of physics in the VCU College of Humanities and Sciences.

The right combination of these properties could one day be applied to a variety of technologies.

“Unlike high-pressure techniques that require three terapascals of pressure to make carbon metallic, the studied structures are stable at ambient conditions and may be synthesized using benzene or polyacenes molecules,” said co-lead investigator Qian Wang, Ph.D., who holds a professor position at Peking University and an adjunct faculty position at VCU.

“The new metallic carbon structures may have important applications in lightweight metals for space applications, catalysis and in devices showing negative differential resistance or superconductivity,” Wang said.

According to Jena, the team is still early in its discovery process, but hope that these findings may move the work from theory to the experimental phase.

The study is titled, “Three-dimensional Metallic Carbon: Stable Phases with Interlocking Hexagons."

This research was supported by grants from the National Natural Science Foundation of China, grant numbers NSFC-11174014, NSFC-21273012; the National Grand Fundamental Research 973 Program of China, grant number 2012CB921404; and the U.S. Department of Energy, grant number DE-FG02-96ER45579.

EDITOR’S NOTE: A copy of the paper is available to reporters by contacting the PNAS News Office at (202).334.1310, or PNASnews@nas.edu.

About VCU and the VCU Medical Center

Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located in downtown Richmond, VCU enrolls nearly 31,000 students in 223 degree and certificate programs in the arts, sciences and humanities. Sixty-eight of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University comprise the VCU Medical Center, one of the nation’s leading academic medical centers. For more, see www.vcu.edu.

Sathya Achia Abraham | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>