Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting material defects in ship propellers

02.04.2012
Ship propellers are as large as a single-family home – and manufacturing them is quite a challenge.

During the casting process, pores and miniscule cracks can form that in the worst case may cause a blade to break. Now these massive components can be inspected for defects in a non-invasive manner, using a new kind of ultrasound process.


Suction feet are used to attach the mobile scanner to the propeller. Researchers record the ultrasound test data on-site. © Fraunhofer ITWM

They can weigh up to 150 tons, and it’s not uncommon for them to measure nine meters or more in diameter: the ship propellers on huge tankers, container ships and cruise liners are invisible giants. Damage to these massive propellers could render a ship unmaneuverable – with unpredictable consequences for people and the environment. Many defects do not come from external influences, but instead originate in the production or repair process.

For example, when the molded parts are being cast, any turbulence could lead to sand inclusions and pores. Left undetected, critical imperfections could lead to breakage of a blade.

Until now, propellers have been inspected manually for inner defects when necessary. To make them visible, the inspector guides an ultrasound test probe over the component by hand – an error-prone procedure that fails to capture the entire volume of the component. This method cannot detect cracks inside the propeller in certain circumstances.

To identify defects in a timely manner, researchers at the Fraunhofer Institute for Industrial Mathematics ITWM developed a mechanized ultrasound process that can be used for the non-destructive testing of complex components. The scientists received support from the GL Group (Germanischer Lloyd) and propeller manufacturer Wärtsilä Propulsion Netherlands.

Mobile scanner can be positioned freely

“With our mobile ultrasound test system, we can inspect copper-nickel-aluminum bronzes up to 450 millimeters thick and detect fissures down to a few millimeters in length. Because we emit the ultrasound at defined angles, we also find defects positioned at an angle to the surface”, says Dr. Martin Spies of ITWM in Kaiserslautern. The system is capable of recording large volumes of digitized ultrasound test data, taking into account the many and variously intense curvatures of the propeller surface.

The device currently scans test grids of 700 by 400 millimeters, achieving a rate of up to 100 millimeters per second. The mobile scanner can be positioned anywhere on the propeller, and, thanks to its suction feet, it can be attached in a horizontal as well as vertical test position. “We obtained the 3D data about the inside of the component by an imaging procedure known as SAFT. It provides a detailed display of inclusions and welding-seam defects. It basically works like computer tomography in medicine,” explains Spies.

With the aid of special computational processes and algorithms, the experts have succeeded in reducing interference signals and intensifying error signals – a complicated task, since the various areas of the blade do not have a homogenously coarse grain. This can weaken the echo substantially. The specialists also use simulations to calculate in advance which ultrasound test probe they have to deploy.

The researchers use the mobile scan system for their on-site testing at foundries, at propeller manufacturers, on deck and in dry dock, and are currently improving scan times and 3D defect imaging. Only recently, they were able to put the efficiency of their procedure to the test at the world‘s largest shipbuilder in Korea. “The customer wanted to document the quality of its propellers, to gain an edge over the competition,” says Spies.

“With our procedure, we can test not only propellers but also other complex components made of materials that are difficult to test, like offshore components made of duplex steels,” he stressed. ITWM researchers Alexander Dillhöfer, Hans Rieder and Dr. Martin Spies recently received the Innovation Award from the Deutsches Kupferinstitut for their outstanding accomplishments with copper and its alloys.

Franz Miller | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/april/detecting-material-defects-in-ship-propellers.html

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>