Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defects can 'Hulk-up' materials

21.05.2015

Berkeley lab study shows properly managed damage can boost material thermoelectric performances

In the story of the Marvel Universe superhero known as the Hulk, exposure to gamma radiation transforms scientist Bruce Banner into a far more powerful version of himself. In a study at Berkeley Lab, exposure to alpha-particle radiation has been shown to transform certain thermoelectric materials into far more powerful versions of themselves.


Cross sectional HRTEM image of bismuth telluride thin-film grown on gallium arsenide substrate.

Courtesy of Junqiao Wu, Berkeley Lab

"We've demonstrated that by irradiating a thermoelectric semiconductor with high-energy alpha particles, we can control native defects in the crystal so that these defects actually enhance the performance of the thermoelectric material by a factor of up to ten," says Junqiao Wu, a physicist who holds joint appointments with Berkeley Lab's Materials Sciences Division and the University of California Berkeley's Department of Materials Science and Engineering. "Although this discovery goes against common wisdom, it turns out that when properly managed, a damaged thermoelectric material is a better thermoelectric material."

The ability of thermoelectric materials to convert heat into electricity, or electricity into cooling, represents a potentially huge source of clean, green energy. Consequently, thermoelectric materials have been heavily investigated over the past several decades. Past studies have shown that the efficiency of heat-to-electricity conversion -- a metric known as the "figure-of-merit" or ZT -- is inherently limited by the coupling of three key parameters: electrical conductivity, thermopower and thermal conductivity.

"Usually thermopower is enhanced at the cost of a reduction in electrical conductivity," Wu says, "but we have been able to break this undesired coupling and demonstrate simultaneous increases in electrical conductivity of up to 200-percent, and thermopower of up to 70-percent."

By irradiating with alpha-particles thin-films of bismuth telluride, a well-characterized thermoelectric, Wu and his collaborators achieved a ZT value as high as 1.24, the highest rating ever recorded for bismuth telluride at room temperature.

"The alpha particles knocked out atoms from their lattice sites and introduced native defects such as vacancies and interstitials," says Joonki Suh, a member of Wu's research group and lead author of a paper describing this study (see below). "Normally, you would expect defects to degrade a material's performance, but the alpha particles inflicted relatively heavy damage beneath the surfaces of the bismuth telluride thin-films while allowing the surfaces to retain good electrical conductivity. The results were controlled native defects that acted beneficially and multi-functionally as electron donors and electron energy filters."

As they expect native defects to be generated and behave in a similar manner to what was accomplished with bismuth telluride across a wide range of narrow-bandgap semiconductors, Wu and his collaborators believe their technique can be used to improve the ZT values of other thermoelectric materials without the need for complicated and expensive materials processing.

"For example," Wu says, "one could use irradiation to improve the performance of thin-film thermoelectric devices that are potentially important for on-chip cooling of high-power electronics. One could also control the growth process of bulk thermoelectric materials to stabilize useful native defects."

In addition, thermoelectric materials are being groomed for use in radiative environments, such as outer space. The data provided by this study should provide helpful guidelines for the selection of future materials.

"From a fundamental science point of view, defects, especially native defects, have always been a focus of research in the materials sciences, but their role in coupled thermal-electrical transport, as well as in entropy-transporting in thermoelectric materials, has been poorly understood," Wu says. "Our work lays a solid foundation for a complete understanding of the physics behind these processes. It also serves as a reminder that defects in materials are not necessarily bad."

###

A paper describing this research has been published in the journal Advanced Materials. The paper is titled "Simultaneous Enhancement of Electrical Conductivity and Thermopower of Bi2Te3 by Multi-Functionality of Native Defects." Wu is the corresponding author, Suh is the lead author. Other authors are Kin Man Yu, Deyi Fu, Xinyu Liu, Fan Yang, Jin Fan, David Smith, Yong-Hang Zhang, Jacek Furdyna, Chris Dames and Wladyslaw Walukiewicz.

This research was primarily funded by the DOE Office of Science and the National Science Foundation.

Media Contact

Lynn Yarris
lcyarris@lbl.gov
510-486-5375

 @BerkeleyLab

http://www.lbl.gov 

Lynn Yarris | EurekAlert!

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>