Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Creation of Database for Promising Adsorbents for Decontamination of Radioactive Substances from Nuclear Power Plants

13.01.2012
NIMS is collecting basic data on natural minerals produced in various regions and inorganic materials with different chemical compositions as a tool for selecting suitable materials, and will make this information available in a NIMS Materials database (MatNavi).

The search for more effective methods of decontamination of radioactive substances discharged from the Fukushima Daiichi Nuclear Power Plant following the Tohoku Earthquake and Tsunami of March 11, 2011 is an urgent issue. At present, use of natural minerals, beginning with zeolite, as adsorbents is under study as the most promising approach.

In reality, even natural minerals having the same group name possess different adsorption capacities, depending on the chemical composition and original region where the substance was produced. Performance also varies greatly depending on use conditions, such as the concentration of radioactive substances, acidity of the use environment, and the like. In other words, because the most effective adsorbent will vary depending on the use environment, it is necessary to select the optimum adsorbent for the conditions at each site. However, comprehensive data showing the adsorption capacities of the large number of promising materials did not exist anywhere in the world, highlighting the urgent need to create a database for use when selecting adsorbents.

The National Institute for Materials Science (NIMS) is collecting basic data on natural minerals produced in various regions and inorganic materials with different chemical compositions as a tool for selecting suitable materials, and will make this information available in a NIMS Materials database (MatNavi). The objects are adsorbents for cesium, strontium, and iodine. For the adsorbents under study, NIMS has collected nearly 800 basic data items for 60 species of materials from various localities and with various chemical compositions.

Contamination resulting from the release of radioactive substances affects a wide range of environments. The assumed objects range from contaminated water including seawater which was used to tool the reactor core and is accumulating at the power plant site, contaminated soil in the immediate vicinity of the plant and in the larger region around the plant (rice paddies, fields, orchards, etc.), woods and forests, water, buildings, roadways, and others. The distribution of contaminated water is also extremely diverse, encompassing seawater, river water, ponds and lakes, pools, agricultural water, etc. Because it is necessary to remove radioactive substances from this diverse range of sites, NIMS is performing experiments and collecting data on many types of adsorbents under a wide variety of conditions.

Database construction is being carried out by a total of 7 universities, 4 Independent Administrative Institutions (IAIs), and 1 foundation under Dr. Hirohisa Yamada, Group Leader of the Functional Geomaterials Group, National Institute for Materials Science. In addition to NIMS, the participating organizations are Hokkaido University, Iwate University, Tokyo Institute of Technology, Shimane University, the University of Miyazaki, Tokyo Metropolitan University, Kanazawa Institute of Technology, the Japan International Research Center for Agricultural Sciences (JIRCAS), the National Institute of Advanced Industrial Science and Technology (AIST), the Japan Atomic Energy Agency (JAEA), and the Central Research Institute of the Electric Power Industry (CRIEPI). These research teams are also key members of the Clay Science Society of Japan.

This research and development project is being implemented mainly with support from the FY2011 Strategic Funds for Promotion of Science and Technology, “Establishment of the Base for Taking Measures for Environmental Impact of Radioactive Substances” of the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>