Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer simulations reveal universal increase in electrical conductivity

12.08.2013
Computer simulations have revealed how the electrical conductivity of many materials increases with a strong electrical field in a universal way. This development could have significant implications for practical systems in electrochemistry, biochemistry, electrical engineering and beyond.

The study, published in Nature Materials, investigated the electrical conductivity of a solid electrolyte, a system of positive and negative atoms on a crystal lattice. The behaviour of this system is an indicator of the universal behaviour occurring within a broad range of materials from pure water to conducting glasses and biological molecules.


This image shows simulated correlation function for thermally excited charge pairs in a strong electric field. The lattice simulations provide access to atomic-scale details, giving new insights into the universal increase of electric conductivity predicted by Onsager in 1934.

Credit: Credit: London Centre for Nanotechnology

Electrical conductivity, a measure of how strongly a given material conducts the flow of electric current, is generally understood in terms of Ohm's law, which states that the conductivity is independent of the magnitude of an applied electric field, i.e. the voltage per metre.

This law is widely obeyed in weak applied fields, which means that most material samples can be ascribed a definite electrical resistance, measured in Ohms.

However, at strong electric fields, many materials show a departure from Ohm's law, whereby the conductivity increases rapidly with increasing field. The reason for this is that new current-carrying charges within the material are liberated by the electric field, thus increasing the conductivity.

Remarkably, for a large class of materials, the form of the conductivity increase is universal - it doesn't depend on the material involved, but instead is the same for a wide range of dissimilar materials.

The universality was first comprehended in 1934 by the future Nobel Laureate Lars Onsager, who derived a theory for the conductivity increase in electrolytes like acetic acid, where it is called the "second Wien effect". Onsager's theory has recently been applied to a wide variety of systems, including biochemical conductors, glasses, ion-exchange membranes, semiconductors, solar cell materials and to "magnetic monopoles" in spin ice.

Researchers at the London Centre for Nanotechnology (LCN), the Max Plank Institute for Complex Systems in Dresden, Germany and the University of Lyon, France, succeeded for the first time in using computer simulations to look at the second Wien effect. The study, by Vojtech Kaiser, Steve Bramwell, Peter Holdsworth and Roderich Moessner, reveals new details of the universal effect that will help interpret a wide varierty of experiments.

Professor Steve Bramwell of the LCN said: "Onsager's Wien effect is of practical importance and contains beautiful physics: with computer simulations we can finally explore and expose its secrets at the atomic scale.

"As modern science and technology increasingly explores high electric fields, the new details of high field conduction revealed by these simulations, will have increasing importance."

Notes to editors

For more information, contact David Weston in the UCL Press Office on +44 (0) 203 108 3844 (out of hours 07917 271 364) or d.weston@ucl.ac.uk

Journal link: 'Onsager's Wien effect on a lattice', Nature Materials Advance Online Publication, 11th August 2013; DOI: 10.1038/NMAT3729

Image caption: Simulated correlation function for thermally excited charge pairs in a strong electric field. The lattice simulations provide access to atomic-scale details, giving new insights into the universal increase of electric conductivity predicted by Onsager in 1934.

About UCL (University College London)

Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender and the first to provide systematic teaching of law, architecture and medicine. We are among the world's top universities, as reflected by our performance in a range of international rankings and tables. According to the Thomson Scientific Citation Index, UCL is the second most highly cited European university and the 15th most highly cited in the world. UCL has nearly 27,000 students from 150 countries and more than 9,000 employees, of whom one third are from outside the UK. The university is based in Bloomsbury in the heart of London, but also has two international campuses – UCL Australia and UCL Qatar. Our annual income is more than £800 million.

David Weston | EurekAlert!
Further information:
http://www.ucl.ac.uk

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>